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Abstract

We study the evolution of syntax in a simple multi-agent
model. The fitness of agents in the model is not a fixed
function of the individual languages, but depends on
their communicative success in the group and thus on the
composition of the population. This fact significantly al-
ters the evolutionary dynamics, and can both facilitate
and hinder the development of syntactic language. The
results challenge the traditional picture of the transition
towards syntactical language.

Introduction
The transition from short, finite communication
systems found in many animal species, to the open
ended language system of humans, is considered
to be one of the major transitions in evolution
(Maynard-Smith & Szathmáry, 1995). There is
large agreement that the main qualitative differ-
ence is the syntax of human language: the syntac-
tic nature allows for a systematic production and
interpretation of an unbounded amount of different
messages. Syntax therefore reconciles the need for
a large expressiveness with the limitations in hu-
man learning and memory. This aspect is, in the
traditional view, what makes syntaxselectively ad-
vantageous, and caused the transition from an ex-
tensive non-syntactical “protolanguage” to a more
efficient, syntactical language system (Pinker &
Bloom, 1990; Nowak & Krakauer, 1999).

We study this transition in a computational
model of an evolving population of communicat-
ing agents. The main advantages of computational
and mathematical models such as (Hurford, 1989;
Steels, 1997; Hashimoto & Ikegami, 1996; Nowak
& Krakauer, 1999), are that they arerelatively pre-
ciseandproductive, in the sense that they generate
new concepts and hypotheses. The main contribu-
tion so far is that they have shown the plausibility of
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cultural evolutionas a mechanism in the develop-
ment of more complex languages (De Jong, 1998;
De Boer & Vogt, 1999; Batali, 1997; Kirby, 2000).

Fewer studies exist that model genetic trans-
mission of language capabilities. Following
Hashimoto & Ikegami (1996), the model reported
in this paper studies the dynamics of genetic trans-
mission of language. Our model takes an extreme
position, as it ignores learning mechanisms and se-
mantics, and models genetic adaptation ofparticu-
lar grammars. Language capabilities are described
with “context free grammars”, that make compo-
sitional and recursive structures very easy to ob-
tain. However, unlike some other studies of genetic
transmission (e.g. Batali, 1994), no static fitness
function is defined; the grammars of all individu-
als in a group determine the environment in which
an agent must survive.

Under these simplified conditions, the interac-
tion between evolutionary dynamics and group dy-
namics can be studied. We will show that even
without learning and cultural transmission, “social
patterns” can influence the evolutionary dynamics.
We observe that the multi-agent set-up can yield
powerful, recursive grammars, but it can also pre-
vent a population from obtaining them. Interest-
ingly, because of these group effects, rules in one
agent’s grammar can influence the persistence of
rules in other grammars, even though the mech-
anism of cultural evolution is excluded. We will
show, that the results in some sense challenge the
traditional picture of the transition towards syntac-
tical language.

Model description

The model consists of a small set of agents that
play a language game. They communicate in a
language of short sequences (maxl = 6) of 0’s



and 1’s. Agents speak (“derive”) and understand
(“parse”) these strings using a Chomskyan rewrit-
ing grammar, which they inherited – with some
random mutations – from their parent. In each lan-
guage game, all agents can speak once and try to
understand each of the spoken strings. Agents re-
ceive scores depending on their success in speak-
ing, understanding and (not) being understood. Af-
ter a number of language games, scores are evalu-
ated and offspring is produced. Successful agents
have a higher chance of survival and reproduction.

The grammars of the agents are context free
grammars, with a small terminal (Vte = f0; 1g)
and non-terminal alphabet (Vnt = fS;A;Bg). As
an extra restriction, the start symbol is not allowed
on the right-hand side of rules. At the start of
most simulations, grammars are randomly initial-
ized with eitherS 7! 1 or S 7! 0.

Derivation always starts with the start symbol,
and applies iteratively random fitting rules for some
maximum number of steps (maxd = 60; fail-
ure), until no fitting rule exists (failure), or until
a string of only terminal symbols is reached (suc-
cess). Inparsingrules are tried in the order they are
stored, and fitting rules are applied recursively un-
til the maximum number of steps (maxp = 500) is
reached (failure), no other fitting rules exist to any
intermediate string (failure), or the start symbol is
reached (success).

The model arcitecture is similar to the model in-
troduced by Hashimoto & Ikegami (1996). They
discuss their results in terms of the Chomsky hi-
erarchy of grammars and languages. In a domain
of changing grammars and finite languages, we be-
lieve it is much more convenient to use a classifica-
tion in terms of “routes”. Aroute is a sequence
of rewriting steps that connects the start symbolS to a string of terminal symbols. Routes can be
categorized aslexical (directly fromS to a termi-
nal string),compositional(via non-terminal sym-
bols fromS to a terminal string) orrecursive(lead-
ing from a non-terminal symbol via one or more
rewriting steps to the same non-terminal symbol).
The number of routes, can be divided in three com-
ponentsRI , RC , RR, that depend on each of these
categories of routes. Similarly, expressiveness (the
number of distinct strings a grammar can parse) can
be divided inEI , EC , ER. routes. Grammars can

be characterized by these values, and classified ac-
cording to the largest component (Zuidema, 2000).

Results

To evaluate some general properties of the model,
we studied the behavior with the parameter settings
of Hashimoto & Ikegami (1996), and a number of
variations. Similar to their results, we find that evo-
lution can quickly lead to grammars that can parse
a large fraction of the 126 possible strings. How-
ever, under slightly different parameter settings we
also find quite different results. We observe three
types of behavior:

i. The most frequent behavior is a quick growth of
expressiveness, from 1 at initialization, to over
100 after about a 1000 generations. In the first
stage the expressiveness depends only on lexical
routes. Soon, however, compositional routes and
recursive routes become more important. Even-
tually, recursive routes dominate the grammar’s
expressiveness.

ii . Sometimes, it takes much longer to reach the
high level of expressiveness, ranging from 2000
to many thousands of generations. In these type
of runs, compositional routes quickly become
important, but recursive routes are infrequent.

iii . Least frequent are runs that show very little
growth in expressiveness. After 3000 genera-
tions, only around 20 words can be parsed. In
these runs, expressiveness depends almost exclu-
sively on lexical routes.

These types of behavior also differ in their ro-
bustness against mutations and generalization abil-
ities. With some particular parameter settings, each
of the three types of behavior can occur, solely de-
pending on the “seed” for the random generator. At
different generations we restarted runs with origi-
nal grammars but a different random seed. In early
generations, a change of type of behavior occurs
frequently. However, in restarts from later gen-
erations, the type of behavior seems fixed and a
change of type becomes increasingly improbable.
The types of behavior thus formself-enforcing, dy-
namical regimes.
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Figure 1: Three runs, typical for the lexical, compositional
and recursive regimes, and some example grammars.

Context and group effects

These results crucially depend on the fact that the
fitness of an agent is evaluated with respect to its
performance in the group, rather than with respect
to some static fitness function. In a random popula-
tion, agents with more expressive grammars speak
more novel strings, understand more strings and are
less likely to be understood, and thus should re-
ceive higher scores. The existence of the dynamical
regimes, in a non-random population, can be ex-
plained by three mechanisms: amutation bias(mu-
tation tend to produce similar grammars), acontext
effect(rules are generally most successful in a con-
text of similar rules) and agroup effect(agents are
most successful in a group of similar agents).

The derive-languages of individuals, jointly con-
stitute a group language, that in turn determines the
success of agents in parsing. This indirect feed-
back can best be described as asocial patternthat
emerges from individual behaviors, and in turn re-
stricts individual success. Initial similarities (in
terms of our classification) are enforced by these
social patterns.

Apparently, the larger an lexical grammar is, the
less likely it is that evolution can lead to composi-
tional and recursive grammars. This in some sense
contradicts the traditional picture of the evolution
of syntax, that states that only when lexical gram-
mars became too large, syntax emerged.

A simple analysis can lead to some qualitative

predictions on how, given the existence of these
regimes, different variables in the model should re-
late. One can show, that the number of routes grows
linearly with grammar size in the lexical regime. In
a compositional regime it grows faster, and in a re-
cursive regime extremely fast2. A rough estimate of
how expressiveness3 depends onR, gives a quali-
tative explanation for the trajectories in the phase
space in figure 2. If a linear growth of grammar
size over time is assumed, the shape of the curves
in figure 1 can also be explained.
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Figure 2:Trajectories of the same three runs in a phase space
of functional grammar size (the number of rules that are ac-
tually used in communication) vs. expressiveness

Selective advantages

With the scope of possible behaviors sketched, we
can now turn to the question under what selec-
tion pressures the different dynamical behaviors are
likely to arise. To study this, we designed sev-
eral simple scoring schemes. These include:(i)
communication, where both speaker and receiver
benefit from exchanging information; and(ii) per-
ception, where only the recognizing agent benefits
from the information it receives.

2Take for example the simple case of grammars withVnt = fS;Ag, and at most one non-terminal and at least one
terminal symbol at all right-hand sides of rules. Estimates
of R in each of the regimes are:RI � N , RC � � 12N�2

,RR � � 13N�max+2, wheremax is the maximum number
of cycles.

3E � Emax�1� �1� ( 1Emax )�R�, hereEmax = 126



Although recursive structures are always only a
few mutations away, the development of recursive
and expressive grammars is not trivial at all. With
the default initial grammar (randomlyS 7! 1 orS 7! 0), the communication scheme shows no in-
crease in expressiveness, unless an explicit pres-
sure is put on innovation. In that case sometimes
recursive structures develop, but slowly and to a
limited extent. If grammars are initialized with a
longer lexical grammar, even this explicit innova-
tion pressure can not force the simulation out of
the lexical regime.

In contrast, the perception scheme leads to recur-
sive grammars under all circumstances considered.
However, when the population has been at a high
level of expressiveness for some time, agents start
to develop grammars that are just as expressive, but
have a high probability of failing in derivation. The
asymmetry in parsing and derivation makes this
possible.

These results yield an interesting paradox. Under
the parameter settings that lead to expressive gram-
mars, the willingness to speak is absent, while in
cases where communication is mutually beneficial,
no increase in expressiveness occurs.

Conclusions

This study concerns the interaction between group
dynamics and evolutionary dynamics. We have
seen that social patterns influence the course of
evolution. Under some conditions powerful, re-
cursive grammars develop (Hashimoto & Ikegami,
1996). This appears to be due to the social em-
bedding that yields a dynamical fitness landscape,
because simulations with a fixed fitness evaluation
fail to give similar good results.

However, in other circumstances social patterns
hinder the development of such grammars. These
results are particularly interesting, as these specific
circumstances in some sense resemble the situation
that is thought to precede the emergence of syn-
tax: large lexical grammars and mutually beneficial
communication. In the model we arrive at a para-
dox, where those selection pressures that lead to
syntactical languages, also lead to unwillingness to
speak. Preliminary results indicate, that this para-
dox can be solved if a spatial distribution of agents
and local communication is assumed(Zuidema &

Hogeweg, 2000).
Relaxing the idea of explicit selection pressures

for syntax, the analysis of the shapes of the curves
in figure 2 points at an alternative mechanism for
the development of recursion. The fact that recur-
sive expressiveness (ER) grows very fast with the
number of rules (N ), shows that the largerN (i.e.
the “storage capacity”), the larger the expectedrel-
ativefraction of recursive expressiveness. Whereas
the traditional view emphasizes thatcognitive lim-
itationscreate the need for syntax, this observation
indicates that largercognitive abilitiesin fact make
recursive expressiveness more likely to dominate.
This might explain the apparent paradox, that the
species with the most extended cognitive abilities,
is the only species that developed “efficient”, recur-
sive communication.
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