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Abstract

A fundamental, universal property of human language is that its phonology is combinatorial. That is, one can identify a set of basic,

distinct units (phonemes, syllables) that can be productively combined in many different ways. In this paper, we develop a

methodological framework based on evolutionary game theory for studying the evolutionary transition from holistic to combinatorial

signal systems, and use it to evaluate a number of existing models and theories. We find that in all problematic linguistic assumptions are

made or crucial components of evolutionary explanations are omitted. We present a novel model to investigate the hypothesis that

combinatorial phonology results from optimizing signal systems for perceptual distinctiveness. Our model differs from previous models

in three important respects. First, signals are modeled as trajectories through acoustic space; hence, both holistic and combinatorial

signals have a temporal structure. Second, acoustic distinctiveness is defined in terms of the probability of confusion. Third, we show a

path of ever increasing fitness from unstructured, holistic signals to structured signals that can be analyzed as combinatorial. On this

path, every innovation represents an advantage even if no-one else in a population has yet obtained it.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Natural language phonology is combinatorial

One of the universal properties of human language is
that its phonology is combinatorial. In all human
languages, utterances can be split into units that can be
recombined into new valid utterances. Although there
is some controversy about what exactly the units of
(productive) combination are, there is general agreement
that in natural languages—including even sign languages
(Deuchar, 1996; Stokoe, 1960)—meaningless atomic units
(phonemes or syllables) are combined into larger wholes.

In the traditional view, the atomic units are phonemes,
or the distinctive features of these phonemes (Chomsky &
Halle, 1968). Signal repertoires that are built-up from
combinations of phonemes are said to be ‘‘phonemically
e front matter r 2008 Elsevier Ltd. All rights reserved.
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coded’’ (Lindblom, MacNeilage, & Studdert-Kennedy,
1984). One popular alternative view is that the atoms are
syllables, or the possible onsets, codas and nuclei of
syllables (e.g. Levelt & Wheeldon, 1994). A second
alternative theory uses exemplars, which can comprise
several syllables or even words, as its basic units (e.g.
Pierrehumbert, 2001). In this paper we will avoid the
debate about the exact level of combination—and the
conventional term ‘‘phonemic coding’’—and instead focus
on the uncontroversial abstract property of ‘‘combinatorial
phonology’’.2

Note that, whichever the real level of combination is,
there is no logical necessity to assume that all recurring
sound patterns observed in speech are in fact units
of productive combination in the speaker’s brain. For
instance, if one accepts that syllables or exemplars are the
units of combination used by the speaker, phonemes are
2In the animal behavior literature the term ‘‘phonological syntax’’

(coined by Peter Marler, see Ujhelyi, 1996) is often used; Jackendoff (2002,

p. 238) uses the term ‘‘combinatorial, phonological system’’ on which our

terminology is based.
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still a useful level of description to characterize differences
in meaning. We distinguish between:
(1)
 Productively combinatorial phonology, where the cogni-
tive mechanisms for producing, recognizing and
remembering signals make use of a limited sets of units
that are combined in many different ways. Productive
combinatoriality is a property of the internal represen-
tations of language in the speaker.
(2)
 Superficially combinatorial phonology, where parts of
signals overlap (that is, occupy the same position in
acoustic and perceptual space) with parts of other
signals. Superficial combinatoriality is a property of the
observable language. Importantly, the overlapping
parts of different signals need not necessarily also be
the units of combination of the underlying linguistic
representations.
This paper is concerned with mathematical and compu-
tational theories of the evolution of combinatoriality of
human languages at both these levels. It has often been
observed that natural language phonology is discrete, in
that it allows only a small number of basic sounds and not
all feasible sounds in between. In this paper we argue that it
is important to distinguish between discreteness per se, and
superficial and productive combinatoriality. In Section 2,
we will review existing models of Liljencrants and
Lindblom (1972), Lindblom et al. (1984), de Boer (2001)
and Oudeyer (2001, 2002, 2005), and argue that they are
relevant for the origins of discreteness, but have little to say
about the origins of superficial and productive combina-
toriality. Nowak and Krakauer (1999) and Nowak,
Krakauer, and Dress (1999) do address the origins of
productive combinatoriality, but these models have a
number of shortcomings that make them unconvincing as
an explanation for its evolution.

In our own model, that we will introduce in Section 3, we
address the questions of why natural language phonology
is both discrete and superficially combinatorial. We
assume, but do not show in this paper, that superficial
combinatoriality is an important intermediate stage in the
evolution of productive combinatoriality.

1.2. The origins of combinatorial phonology

It is increasingly realized that many examples of bird and
cetacean songs (e.g. Doupe & Kuhl, 1999; Payne &McVay,
1971) and, importantly, non-human primate calls are
combinatorial as well, (Ujhelyi, 1996). For instance, the
‘‘long calls’’ of tamarin monkeys are built up from many
repetitions of the same element (e.g. Masataka, 1987), and
those of gibbons (e.g. Mitani & Marler, 1989) and
chimpanzees (e.g. Arcadi, 1996) of elaborate combinations
of a repertoire of notes.

Such comparative data should be taken seriously, but it
is unwarranted to view combinatorial long calls in other
primates as an immediate precursor of human combinator-
ial phonology, because there are some important qualita-
tive differences:
�
 Although a number of building blocks might be used
repeatedly to construct a call, it does not appear to be
the case that rearranging the building blocks results in a
call with a different meaning.

�
 It is unclear to what extent the building blocks of
primate ‘‘long calls’’ are flexible and whether they are
learned.

�
 In human language, combinatorial phonology functions
as one half of the ‘‘duality of patterning’’ (Hockett,
1960): together with recursive, compositional semantics
it yields the unlimited productivity of natural language,
but it is unclear if the single combinatorial system of
primates can be seen as its precursor.

Nevertheless, combinatorial phonology must have
evolved from holistic systems by natural selection. There
are at least two views on what the advantages of
combinatorial coding over holistic coding are:
(1)
 It makes it possible to transmit a larger number of
messages over a noisy channel (e.g. Nowak &
Krakauer, 1999). Note that this argument requires that
the basic elements are distinct from each other, and that
signals are strings of these basic elements. The
argument does not address, however, how signals are
stored and created.
(2)
 It makes it possible to create an infinitely extensible set
of signals with a limited number of building blocks.
Such productivity provides a solution for memory
limitations and for generalization (the ‘‘productivity
argument’’, a point often made in the generative
linguistics tradition, e.g. Jackendoff, 2002).
These views are a good starting point for investigating the
question of why initially holistic systems (which seem to be
the default for smaller repertoires of calls) would evolve
toward combinatorial systems. However, just showing an
advantage does not constitute an evolutionary explanation
(Parker & Maynard Smith, 1990). At the very least,
evolutionary explanations of an observed phenotype
involve a characterization of (i) the set of possible
phenotypes, (ii) the fitness function over those phenotypes,
and (iii) a sequence of intermediate steps from an
hypothesized initial state to the observed phenotype. For
each next step, one needs to establish that (iv) it has
selective advantage over the previous, and thus can invade
in a population without it. In Section 2 we will criticize
some existing models because they lack some of these
required components.
In language evolution, fitness will not be a function of

the focal individual’s traits alone, but also of those of this
individual’s conversation partners. That is, the selective
advantage of a linguistic trait will depend on the frequency
of that trait in a population (it is ‘‘frequency dependent’’).



ARTICLE IN PRESS
W. Zuidema, B. de Boer / Journal of Phonetics 37 (2009) 125–144 127
Therefore, evolutionary game theory (Maynard Smith,
1982) is the appropriate framework for formalizing
evolutionary explanations for language (Benz, Jäger, &
Van Rooij, 2005; Komarova & Nowak, 2003; Nowak
& Krakauer, 1999; Smith, 2004). In this framework, the
crucial concept is that of an evolutionary stable strategy
(henceforth, ESS): a strategy that cannot be invaded by any
other strategy (Maynard Smith & Price, 1973). Thus
formulated, the challenge is to show that (i) repertoires of
signals with a combinatorial phonology are ESSs, and that
(ii) plausible precursor repertoires, without combinatorial
phonology, are not evolutionarily stable.

There are also theories of the origins of combinatorial
phonology that do not explicitly involve natural selection.
For instance, Lindblom et al. (1984), de Boer (2001)
and Oudeyer (2001, 2002) see ‘‘self-organization’’ as the
mechanism responsible for the emergence of combinatorial
phonology. Models of self-organization are usually con-
sidered by the authors as compatible with natural selection.
We agree, and view the two groups of models as detailing
proximate and ultimate causes, respectively (Tinbergen,
1963). Natural selection modifies the parameters of a self-
organizing process, while self-organization creates the
adaptive landscape for natural selection (Barton &
Zuidema, 2003; Boerlijst & Hogeweg, 1991; Oudeyer,
2006; Waddington, 1939).

2. Existing approaches

2.1. Maximizing discriminability

Liljencrants and Lindblom (1972) argued that one can
understand the structure of the sound systems in natural
language as determined by physical factors, such as
perceptual discriminability and articulatory ease, and not
as the result of arbitrary settings of abstract parameters
(e.g. Chomsky & Halle, 1968). In their paper they focused
on the discriminability of vowel repertoires, and proposed
the following metric to measure their quality:

E ¼
1

2

X
i;jai2R

1

d2
ij

¼
XT

i¼2

Xi�1
j¼1

1

d2
ij

, (1)

where R is a repertoire with T distinct sounds, and dij is
the perceptual distance between sound i and sound j,
determined by the Euclidean distance in the space of the
first and the second formant. E is a measure for the quality
of the system, where lower values correspond to a better
distinguishable repertoire. The E stands for ‘‘energy’’, in
analogy with the potential energy that is minimized in
various models in physics.

Lindblom and Liljencrants performed computer simula-
tions using a simple hill-climbing heuristic, where at each
step a random change to the repertoire is considered, and
adopted only if it has a lower energy than the current state.
Their results compared favorably to observed data on
vowel system distributions. These results were important
because they showed that sound systems in natural
languages are not arbitrary. However, a number of
questions remain. First of all, what in the real world
exactly is the optimization criterion meant to be modeling?
It is important to realize that the optimization criterion in
Eq. (1) is neither maximizing the distances between vowels
nor minimizing the probability of confusion. Minimizing
E ¼ 1

2

P
i;jai2R 1=d2

ij by changing the configuration of a set
of vowels in a restricted acoustic space is not necessarily
the same a maximizing the average distance d ¼

ð1=TÞ
P

i;jai2R dij (or squared distance), nor is it the same
as minimizing the average confusion probability
C ¼ ð1=TÞ

P
i;jai2R Pðj perceivedji utteredÞ. At intermedi-

ate distances, these three criteria behave very similarly.
The crucial difference is at distance 0, where Lindblom and
Liljencrants’s E goes to infinity, and at large distances,
when both the E and C measure, but not d, approach 0. In
Section 3.2 we will argue that Liljencrants and Lindblom’s
E behaves unrealistically, and that minimizing the average
confusion probability (or equivalently, maximizing the
distinctiveness D ¼ 1� C) is a better criterion.
Second, we should ask which mechanism in the real

world is responsible for the optimization. Lindblom
himself has referred to both natural selection and self-
organization. However, the frequency dependence of
language evolution means that natural selection at the
level of the individual cannot be equated with optimization
at the level of the population (see Zuidema & de Boer,
2003). A game-theoretic analysis must show that every new
configuration of signals can invade in a population. Models
of this type will be discussed in the next section. For self-
organization, the mechanism for optimization has been
worked out more precisely. de Boer (2000, 2001) has
studied a simulation model of a population and showed
that similar configurations of vowels emerge as in the
Lindblom and Liljencrants model.
Finally, these existing models have little to say about the

evolution of superficial and productive combination.
Lindblom et al. (1984), and similarly de Boer (1999,
Chapter 7), did study models where signals are trajectories,
going from a point in consonant space, to a point in vowel
space. But those models were still about the emergence of
categories, because the sequencing of sounds is taken as
given. In this paper, in contrast, we will focus on the
emergence of superficial combination.

2.2. Natural selection for combinatorial phonology

Nowak and Krakauer (1999) and Nowak et al. (1999)
apply notions from information theory and evolutionary
game theory to the evolution of language. They derive an
expression for the ‘‘fitness of a language’’. The authors
observe that when communication is noisy and when a
unique signal is used for every meaning, the fitness
is limited by an ‘‘error limit’’: only a limited number of
sounds can be used because by using more sounds the
successful recognition of the current signals would be
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impeded. They further show that in such noisy conditions,
fitness is higher when sounds are combined into longer
words. These results are essentially instantiations of
Shannon’s (1948) more general results on ‘‘noisy coding’’,
as is explored in a later paper by the same group (Plotkin &
Nowak, 2000).

More interesting is the question how natural selection
could favor a linguistic innovation in a population where
that innovation is still very rare. Neither Nowak and
Krakauer (1999) nor Nowak et al. (1999) really address
that problem. Nowak and Krakauer (1999) do, however,
perform a mathematical, game-theoretic analysis of the
evolution of ‘‘compositionality’’, and point out that this
analysis can be adapted easily to the case of combinatorial
phonology, as is worked out in Zuidema (2005). In such an
analysis, all strategies use both holistic and combinatorial
signals.

Nowak and Krakauer assume that the confusion
between holistic signals is larger than the confusion
between combinatorial signals, and that there is no
confusion between the two types of strategies. From these
assumptions it follows that a more combinatorial language
can always invade a population with a less combinatorial
language. This is the case, because for languages L and L0

(with proportions of combinatorial signals x and x0,
respectively) it turns out that

F ðL0;L0Þ4F ðL;L0Þ4F ðL;LÞ if x04x, (2)

where F ða; bÞ is the expected communicative success
(fitness) of users of language a communicating with users
of language b.

If L0 is very infrequent, then all speakers of language L

(the ‘‘residents’’) will have a fitness of approximately
F ðL;LÞ and the rare speakers of language L0 (the
‘‘mutants’’) will have fitness of approximately F ðL;L0Þ,
because for both residents and mutants the vast majority of
interactions will be with speakers of language L. Once the
frequency of mutants starts to rise, the residents will gain in
fitness, that is, move toward a fitness F ðL;L0Þ. However,
the mutants will gain even more by interacting more and
more with other mutants, that is, move toward F ðL0;L0Þ.
Hence, these calculations show that strategies that use
more combinatoriality can invade strategies that use less.
This means that the evolutionary dynamics of languages
under natural selection should lead to compositionality and
combinatorial phonology.

Although this model is a useful formalization of the
problem and gives some important insights, as an
explanation for the evolution of compositionality—and,
by implication, the evolution of combinatorial phonol-
ogy—it is incomplete. The problem is that the model only
considers the advantages of combinatorial strategies, and
does not address two disadvantages: (1) by having a
‘‘mixed strategy’’ individuals have essentially two lan-
guages in parallel, which one should expect to be costly
because of memory and learning demands and additional
confusion. Nowak and Krakauer simply assume that the
second system is in place, and that the hearer interprets all
signals correctly, even if the proportion of combinatorial
signals is close to zero, and the number of learning
experiences is therefore extremely small; (2) combinatorial
signals that consist of two or more sounds take longer to
utter and are thus more costly. A fairer comparison would
be between holistic signals of a certain duration (where
continuation of the same sound decreases the effect of
noise) and combinatorial signals of the same duration
(where the digital coding decreases the effect of noise). This
is the approach we take in the model of this paper, but like
Nowak and Krakauer, we will look at invasibility in
addition to optimization.
2.3. Crystallization in the perception–imitation cycle

A completely different approach to combinatorial
phonology is based on ‘‘categorical perception’’. Catego-
rical perception (Harnad, 1987) is the phenomenon that
categorization influences the perception of stimuli in such a
way that differences between categories are perceived as
larger and differences within categories as smaller or non-
existent. For instance, infants of six months are already
unable to perceive distinctions between sounds that are not
phonemes in their native language, something they were

able to do at birth (Kuhl, Williams, Lacerda, Stevens, &
Lindblom, 1992). Apparently, the frequency and position
of acoustic stimuli gives rise to particular phoneme
prototypes, and the prototypes in turn ‘‘warp’’ the
perception.
Oudeyer (2001, 2006) observes that signals survive over

time because they are perceived and replicated (as many
other speech researchers have noted as well, e.g. Ohala,
1981; Blevins, 2004). Because of noise and categorical
perception, the replicated signal will not always be exactly
the same as the perceived signal. However, the signals that
are produced shape the categories of the other agents. Thus
there is feedback between emitted signals, formation of
categories and perception. This shapes the repertoire of
signals in a cycle from articulation to perception to
articulation (the perception–imitation cycle; see also
Westermann, 2001).
Oudeyer (2001) presents a model to study this phenom-

enon. In this model, signals are modeled as points in an
acoustic space. The model consists of two coupled neural
maps, one for perception and one for articulation. The
perceptual map is of a type known to be able to model
categorical perception: its categorization behavior changes
in response to the input data. In addition, the associations
between perceptual stimuli and articulatory commands are
learned. Through this coupling between perceptual and
articulatory maps, a positive feedback loop emerges where
slight non-uniformities in the input data lead to clusters in
the perceptual map, as well as weak clusters in the
articulatory map, and hence to slightly stronger non-
uniformities in the distribution of acoustic signals. Oudeyer
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calls the collapse of signals into a small number of clusters
‘‘crystallization’’.

In later publications (e.g. Oudeyer, 2006) he generalizes
these results to a model with (quasi-) continuous trajec-
tories in which well-defined clusters also form in the
perceptual and articulatory maps. The signals can be
analyzed as consisting of sequences of phonemes.

Oudeyer’s model gives a completely non-adaptive
mechanism for the emergence of combinatorial phonology.
However, the question whether recombination increases
the functionality of the language, and thus the fitness of the
individual that uses it, remains unanswered. In particular,
in Oudeyer’s (2001) first model, where signals are
instantaneous, a large repertoire of signals collapses into
a small number of clusters. A functional pressure to
maintain the number of distinct signals would thus have to
either reverse the crystallization, or combine signals from
different clusters.

In his later models signals are continuous trajectories
and potentially a much larger distinct repertoire can
emerge. However, the functionality of the repertoire is
not monitored, and plays no role in the dynamics. The
number of ‘‘phonemes’’ that form (the discretization of the
acoustic space: categorization) is a consequence of the
parameters and initial configuration, and in a sense
accidental. The use of a limited number of points through
which the trajectories pass (the superficial combination
aspect) is built-in in the production procedure. The need
for a large and distinctive repertoire, however, is a
functional pressure. In Oudeyer’s model there is no
interaction between the number of phonemes that is
created, and the degree of reuse (the number of phonemes
per signal) that emerges. This issue, which seems the core
issue in understanding the origins of combinatorial
phonology, is not modeled by Oudeyer. In our model, in
contrast, we ensure that the functionality increases rather
than decreases.

2.4. Other models and linguistic theories

All other computational models of the evolution of
combinatorial phonology that we are aware of, also assume
the sequencing of phonetic atoms into longer strings as
given. They concentrate rather on the structure of the
emerged systems (de Boer, 2001; Ke, Ogura, & Wang, 2003;
Lindblom et al., 1984; Redford, Chen, & Miikkulainen,
2001) or on how conventions on specific combinatorial
signal systems can become established in a population
through cultural transmission (Steels & Oudeyer, 2000).
Theories on the evolution of speech developed by linguists
and biologists focus on possible pre-adaptations for
speech. MacNeilage and Davis (2000) propose oscillatory
movements of the jaw such as used in breathing and
chewing as precursors for syllable structure. Fitch (2000)
sees sexual selection as a mechanism to explain the shape of
the human vocal tract. These models and theories bridge
the gap with empirical evidence on how combinatorial
phonology is implemented in the languages of the world.
However, they do not address the origins of the funda-
mental, qualitative properties of discrete and combinatorial
coding. That is, they leave open the question as to under
what circumstances a system of holistically coded signals
with finite duration would change into a combinatorial
system of signals.
Studdert-Kennedy (1998, 2000) has argued that combi-

natorial coding is a direct consequence of articulatory
constraints. In this theory there is a hierarchy of difficulty
of producing speech sounds, which is revealed in develop-
ment. For instance, children master syllables like ba much
earlier than syllables like through. The reason is that
through requires a large number of carefully coordinated
articulatory movements (gestures). Studdert-Kennedy
speculates that the ability to produce such complex sounds
is a relatively recent evolutionary innovation, and that the
inherent difficulty makes the re-use of motor programs
unavoidable. Hence, the combinatorial nature of speech
follows from the difficulty of production and the large
repertoire of words in human languages.
Consistent with this scenario is the neurological evidence

discussed by Deacon (2000) that he believes shows intense
selection for ‘‘the coupling of precisely timed phonation
with rapid articulatory movements of tongue, lips and
jaw.’’ If Studdert-Kennedy and Deacon are right, the
evolutionary transition to combinatorial phonology is
characterized by radical changes in articulatory motor
control. Nevertheless, this innovation is driven by the need
for a large repertoire of perceptually distinct signals. While
leaving open the possibility that the articulatory con-
straints already impose a form of combinatorial phonol-
ogy, we do not need this assumption in the model of this
paper. Rather, we study its evolution as the result of
selection for perceptual distinctiveness alone.

3. Model design

Our model shares features with all existing approaches.
Like the Liljencrants and Lindblom (1972) model, it makes
use of an ‘‘acoustic space’’, a measure for perceptual
distinctiveness and a hill-climbing heuristic. Like the
Nowak and Krakauer (1999) model, the measure for
distinctiveness is based on confusion probabilities, and our
study includes a game-theoretic invasibility analysis.
Finally, like Oudeyer (2002), we model signals not just as
points, but as trajectories through acoustic space.
In the model, we do not assume combinatorial structure,

but rather study the gradual emergence of superficially
combinatorial phonology from initially holistic signals. We
do take into account the temporal structure of both holistic
and phonemically coded signals. We view signals as conti-
nuous movements (‘‘gestures’’, ‘‘trajectories’’) through an
abstract acoustic space. We assume that signals can be
confused, and that the probability of confusion is higher if
signals are more similar. We further assume a functional
pressure that maximizes distinctiveness.



ARTICLE IN PRESS

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance

C
on

fu
si

on
 p

ro
ba

bi
lit

y δ = 2.0

δ = 0.5

δ = 0.2

W. Zuidema, B. de Boer / Journal of Phonetics 37 (2009) 125–144130
Real speech sound repertoires are of course subject to
many other pressures and represent a complex compromise
between acoustic distinctiveness, articulatory ease, con-
formity with (historically established) speech norms,
frequency effects and interactions with other components
of the language faculty. We should therefore not expect
real vowel inventories to always maximize distinctiveness—
as indeed they do not (e.g., Butcher, 1994). The model in
this paper remains abstract and general.

3.1. The acoustic space

The model of this paper will deal with repertoires of
signals, their configuration and the similarities between
signals. This requires conceptualizing signals as points or
movements through a space. An appropriate definition of
acoustic space will, as much as possible, reflect the
articulatory constraints as well as perceptual similarities,
such that signals that cannot be produced fall outside the
space, and that points in the space that are close sound
similar and are more easily confused.

For human perception of vowels, a simple but very useful
acoustic space can be constructed by looking at the formants.
In contrast, it appears that pitch is a more salient variable in
articulations of non-human primates (although at least some
primates are able to manipulate and perceive formant
frequencies as well, Andrew, 1976). Of course, it is difficult
to tell what the appropriate acoustic space is for modeling
articulation and perception of early hominids that feature in
scenarios of the evolution of language (e.g. Jackendoff, 2002;
Lieberman, 1984). However, the considerations that will be
presented below remain the same, independent of the exact
nature of the underlying perceptual dimensions.

3.2. Confusion probabilities

We now have to define how the distance in perceptual
space relates to the probability of confusion. We can get a
general idea by first looking at the simple example of a one-
dimensional acoustic space with just two prototype signals
A and B (modeled as points in that space), and a distance d

between them:

Now assume that a received signal X , lying somewhere on
the continuum, will be perceived as A or B depending on
which is closest. Finally, assume a degree of noise on the
emitted signals, such that when a signal, say A, is uttered,
the received signal X is any signal drawn from a Gaussian
distribution around A:
Fig. 1. The probability of confusion as a function of distance for several

values of d. The curves give the theoretical prediction based on the

calculations in Section 3.2; the points are data from a computational

simulation of the confusion probabilities between two trajectories in a
two-dimensional acoustic space (discussed in Section 3.4).
Now we can calculate the probability that an emitted
signal A is perceived as B:

PðB perceivedjA utteredÞ ¼

Z 1
ð1=2Þd

Nðm ¼ 0;s ¼ dÞ dx

¼

Z 1
ð1=2Þd

1ffiffiffiffiffiffi
2p
p

d
e�x2=2d2 dx, (3)

where d is the standard deviation of the Gaussian. This
integral, which describes the surface under the Gaussian
curve to the right of the point 1

2
d (midway between A

and B), has a number of important features, as illustrated
with the solid curves in Fig. 1 (the points are discussed
later).
First of all, at d ¼ 0, the confusion probability is not

100%, as the naive first intuition might be, but 50%. That
is, even if two signals are identical, the hearer still has 50%
chance of decoding them correctly. Second, with increasing
d, the confusion probability first rapidly decreases and then
slowly approaches 0. These are crucial properties: even
though the confusion probability as a function of distance
can have many different shapes depending on the exact
type of noise and the exact type of categorization, the
function will always have these general characteristics
at d ¼ 0 and in the limit of d !1. In contrast, the
previously discussed E measure, and summed distance
measure, do not have both these properties.
If the acoustic space has more than one dimension, and if

there are more than two signals, calculations like in Eq. (3),
quickly get extremely complex, and confusion probabilities
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are no longer uniquely dependent on distance. We can,
however, assume that the confusion probabilities are
generally proportional to a function of distance with a
shape as in Fig. 1. Define f ðdÞ to be a function of distance
d, parameterized by the noise level d:

f ðdÞ ¼

Z 1
ð1=2Þd

1ffiffiffiffiffiffi
2p
p

d
e�x2=2d2 dx,

¼
1

2
�

1

2
erf

d

2d
ffiffiffi
2
p

� �
. (4)

We assume that confusion probabilities are proportional to
their ‘‘f -value’’: PðB perceivedjA utteredÞ / f ðdðA;BÞÞ. But
we also know that the probabilities of confusing a signal
with any of the other signals in a repertoire (including the
signal itself) must add up to 1:X

X2R
PðX perceivedjA utteredÞ ¼ 1.

Hence, we can estimate the probability of confusing signal
A with signal B as

PðB perceivedjA utteredÞ ¼
f ðdðA;BÞÞP

X2R f ðdðA;X ÞÞ
. (5)

From this a measure for the distinctiveness D of a repertoire
can be defined. Let DðRÞ be the estimated probability that a
random signal t from a repertoire R with T signals is
correctly identified (note that dðRt;RtÞ ¼ 0):

DðRÞ ¼
1

T

XT

t¼1

f ðdðRt;RtÞÞPT
t0¼1 f ðdðRt;Rt0 ÞÞ

. (6)

3.3. Trajectory representation

We can now extend the model to deal with signals that
have a temporal dimension. We define temporal signals as
trajectories: movements through the acoustic space. In a
digital computer, continuous quantities need to be dis-
cretized, and continuous trajectories will therefore need to
be split up in a fixed number of points (this is analogous to
the sampling of speech signals). In our approach, a
trajectory is a connected sequence of points. Each
connection between two points represents the acoustic
and perceptual properties of a small interval of the original
trajectory.

To illustrate the feasibility of deriving trajectory
representations from acoustic data, we show in Fig. 2 a
number of trajectories through vowel space that are based
on actual recordings. The graph shows the trajectories
from a number of recorded vowels, which correspond to
more-or-less stationary trajectories in the space, and from
recordings of a number of diphthongs, which correspond
to movements from one vowel’s region to another.

We will take as our starting point a set of trajectories
through an abstract acoustic space. The model is based on
piece-wise linear trajectories in bounded two-dimensional
or three-dimensional continuous spaces of size 1� 1 or
1� 1� 1. Trajectories are sequences of a fixed number of
points (parameter P). Each point has a maximum distance
(parameter S) to the immediately preceding and following
points in the sequence. This is to prevent signals from
changing unrealistically fast. The following and preceding
points to a point can lay anywhere within a circle of radius
S with that point at the center. This way, there is no bias
for straight trajectories. As will be seen in the results, this
sometimes causes trajectories to ‘jitter’ around a point,
but this effect is small enough to be considered noise.
Trajectories always stay within the bounds of the acoustic
space.
As mentioned above, we need to discretize the trajec-

tories. To ensure that we do not impose the combinatorial
structure we are interested in, we discretize at a much finer
scale than the combinatorial patterns that will emerge.
Hence, the points implement a discretization of a
continuous trajectory that can represent both a holistic
and a combinatorial signal.

3.4. Measuring distances and optimizing distinctiveness

between trajectories

When optimizing trajectories, we measure the distance
between complete trajectories and optimize their distinc-
tiveness. In such an approach, there is a role for
combinatorial phonology: the confusion probability be-
tween two largely overlapping trajectories might be very
low, as long as they are sufficiently distinct along one
stretch of their length. We define the distance between
two trajectories ti and tj, as the average distance between
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the corresponding points on the trajectories:

dðti; tjÞ ¼
1

P

XP

p¼1

dðt
p
i ; t

p
j Þ, (7)

where t
p
i is the p-th point on the i-th trajectory in a

repertoire, and dða; bÞ gives the distance between two
points a and b.

This distance measure then provides the input to the
distance-to-confusion function that we derived for points
(Eq. (6)). For trajectories, it is far from trivial to derive the
exact shape of that function analytically, even if the noise
and categorization mechanisms were completely known.
However, we have performed computational experiments
that demonstrate that our approximation is very accurate.
In these simulations, noise was simulated using the
DISTURBANCE function as will be defined in Section 3.5,
and nearest neighbor classification. The dots in Fig. 1 show
results relating distance between two trajectories with the
probability that they are confused. The results give an
excellent fit with the approximation of Eq. (6), and thus
indicate that the distance-to-confusion function for points
is also applicable to trajectories.
3.5. The hill-climbing heuristic

Now that we have defined a distance metric, it is
straightforward to use a hill-climbing heuristic such as
in Liljencrants and Lindblom (1972). Hill-climbing is an
iterative procedure, where repeatedly a random change
to the repertoire is considered, and if it improves the
distinctiveness it is applied. In pseudo-code, the procedure
looks as follows:
% R is a repertoire of signals
% S is the segment length parameter
% r is the hill-climbing rate parameter
% d is the acoustic noise parameter
for i ¼ 1 to I

R0 ¼ constrainðRþ disturbanceðrÞ;SÞ;
if hillclimbing-criterionðR;R0; dÞ then R ¼ R0;

end for
3The program is available at http://staff.science.uva.nl/�jzuidema.
Here, DISTURBANCE applies random noise (from a Gaussian
with m ¼ 0 and s ¼ r), to all of the coordinates of a
(uniformly) random point on a random trajectory. CONSTRAIN

is a function that enforces that all points on the trajectories
fall within the boundaries of the acoustic space, and that all
segments have maximum length S. Hence, after a random
point tx is moved to a new random position, the CONSTRAIN

function first moves it back, if necessary, within the
boundaries of the acoustic space; it then moves the two
points on both sides of the moved point, txþ1 and tx�1,
closer, if necessary, such that the distance to tx is no more
than S. The direction from tx to txþ1 or tx�1 remains the
same. The same procedure is applied iteratively to the
neighbors of txþ1 and tx�1 until the ends of the trajectory
are reached. The hillclimbing-criterionðR;R0; dÞ in the
basic model, which we call the ‘‘optimization condition’’
(OP), is defined as follows:

OP: DdðR
0Þ4DdðRÞ, (8)

where D is the distinctiveness function given in Eq. (6).
Note that this criterion is frequency-independent; in
Section 4.5 we will consider frequency-dependent criteria.
Trajectories are initialized randomly. In the default

initialization, we generate for each trajectory P random
points (from a uniform distribution over the acoustic
space), and then apply the CONSTRAIN function to it.
Hill-climbing is just an optimization heuristic; there is no

guarantee that it will find the optimal configuration. The
system is likely to move toward a local optimum. This
problem is in general unavoidable for systems with so
many variables. Hence, also in nature, the optimization of
sound systems has not escaped the problem of local
optima. The real optimum is therefore not necessarily
interesting for describing the patterns in human speech.
Instead, we will concentrate on general properties of the
local optima we find, and on the gradual route towards
them.

4. Results

We have implemented the model in Cþþ and MatLab.3

We have run simulations with a large number of parameter
combinations and a number of variations of the basic
model. In the following we will first briefly give an overview
of the general behavior of the model in these simulations by
means of a representative example, and then give a detailed
analysis of why we observe the kind of results that we do.
In Sections 4.5 and 4.7 we will study extensions of the basic
model where we test whether innovations can invade in
populations where they are rare, and where we evaluate
some of the other simplifications made in the basic model.

4.1. An overview of the results

Fig. 3(a) shows an equilibrium configuration of nine
point-like signals in an abstract acoustic space, optimized
for distinctiveness at an intermediate noise-level (d ¼ 0:1).
This particular configuration is stable: no further improve-
ments of the distinctiveness of the repertoire can be
obtained by making small changes to the location of any
of the signals. The distinctiveness D ¼ 0:97; that is, with
the given noise level, our estimate of the probability of
successful recognition of a signal is 97%.
Fig. 3(b) shows nine trajectories, consisting of 10 points

and hence nine segments each. Each of these trajectories
was created by taking 10 copies of one of the points in
figure (a) and connecting them. A small amount of noise
was added to each point, and the CONSTRAIN function, as
described above, was applied to each trajectory, enforcing
a maximum distance (S ¼ 0:1) between all neighboring

http://staff.science.uva.nl/~jzuidema
http://staff.science.uva.nl/~jzuidema
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Fig. 3. In a combinatorial phonology, distinctiveness of signals at each particular time-slice is sacrificed for better distinctiveness of the whole trajectory.

Instantaneous signal (or equivalently, stationary trajectories) will be organized in patterns like (a) and not like (d) when optimized for distinctiveness. For

non-stationary trajectories, the same pattern, as in (b), is not stable, but will—after optimization—instead be organized like (c). Each individual time-slice,

as illustrated with the end-points in (d) is suboptimal, but the whole temporal repertoire is at a local optimum.

4No qualitative changes have been observed in many thousands of

additional iterations.
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points on the same trajectory. Due to this perturbation, the
distinctiveness of this repertoire of trajectories is somewhat
lower, D ¼ 0:94, than of the repertoire in (a).
What will happen if we now optimize, through hill-

climbing, the repertoire of trajectories for distinctiveness?
One possibility is that the applied perturbations are
nullified, such that the system moves back to the
configuration of (a). That is not what happens, however.
Rather, the system moves to a configuration as in Fig. 3(c).
This graph shows a number of important features. First, all
trajectories start and end near to where other trajectories
start and end. The repertoire therefore can be said to
exhibit a superficially combinatorial phonology: if we label
the corners A;B;C and D, we can describe the repertoire
as: fA;AB;B;CA;BC;C;CD;DB;Dg. That is, we need only
four category labels (phonemes) to describe a repertoire of
nine signals. In contrast, the repertoire in (b) is most easily
described by postulating nine categories, one for each
trajectory.
Second, some trajectories are bunched up in as small a

region as possible, but other trajectories are stretched out
over the full length of the space. Third, the configuration of
the repertoire is in a local optimum.4 Fourth, at each time-
slice the configuration of the corresponding points is in fact
suboptimal. For instance, in Fig. 3(d) just the endpoints of
the trajectories in (c) are shown. All of these points are
closer to their nearest neighbor than any of the points in



ARTICLE IN PRESS
W. Zuidema, B. de Boer / Journal of Phonetics 37 (2009) 125–144134
(a). Similar results are obtained for random initial
conditions. We will now look at a number of simple cases
that explain why the optimized repertoires have these
features.

4.2. The optimal configuration depends on the noise level

To evaluate the role of the noise parameter d, it is
instructive to first look at a simple, one-dimensional
example with signals as points. Consider a situation with
three signals, two of which are fixed at the edges of a one-
dimensional acoustic space. The third signal is at distance x

from the leftmost signal, and at distance 1� x from the
rightmost signal:

The x that maximizes distinctiveness depends on the noise
level d. Recall that distinctiveness D is defined as the
average probability of correct recognition (Eq. (6)). In this
case, we have three terms describing the recognition
probabilities of each of the three signals. These are

Pðt1 perceivedjt1 utteredÞ ¼
f ð0Þ

f ð0Þ þ f ðxÞ þ f ð1Þ
, (9)

Pðt2 perceivedjt2 utteredÞ ¼
f ð0Þ

f ðxÞ þ f ð0Þ þ f ð1� xÞ
, (10)

Pðt3 perceivedjt3 utteredÞ ¼
f ð0Þ

f ð1Þ þ f ð1� xÞ þ f ð0Þ
. (11)

The values of these three functions, for two different
choices of d are plotted in Fig. 4(a) and (b). If we add up
these three curves, we find the curves in Fig 4(c). Clearly,
for low levels of noise the optimal value of x is x ¼ 0:5. For
higher noise levels this optimum disappears, and the
optimal configuration has x ¼ 0 or 1. That is, if there is
too much noise, it is better to have several signals overlap.
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panel (b) shows them in a high-noise environment. Panel (c) compares the

conditions. Note that the high-noise condition has a minimum at maximal dis
Fig. 5(a) shows a two-dimensional system of nine points
optimized for distinctiveness with a high-noise level
(d ¼ 1). The optimal configuration under these conditions
is to have each signal in one of the four corners: three
corners with two signals, and one corner with three signals.
With this configuration, the distance between the two or
three signals that share a corner is d ¼ 0, and their mutual
confusability is high. But at least the distance to the other
signals is high (d ¼ 1, or d ¼

ffiffiffi
2
p

).
Maximizing distinctiveness is, because of the high-noise

level, equivalent to maximizing summed distance. Consider
one of the signals in the top-right corner, and consider
moving it to the left, that is, away from the two signals
already in that corner. The gain in distance from the top-
right corner (Ddtr), will be exactly canceled out by the loss
in distance from the top-left corner (Ddtl). The gain in
distance from the bottom-right corner (Ddbr), however,
will not compensate for the loss in distance from the
bottom-left corner (Ddbl). To see why, consider moving the
signal a distance � to the left. The (squared) gain in distance
to the top-right is given by

Ddbr2 ¼ ½�2 þ 1� � ½1� ¼ �2. (12)

The (squared) loss in the distance to the top-left by

Ddbl2 ¼ ½1þ 1� � ½ð1� �Þ2 þ 1� ¼ ½1þ 1� � ½1� 2�þ �2 þ 1� ¼ 2�� �2.

(13)

The summed distance will increase only if (12) is larger
than (13), which is never the case if 0p�p1.
In contrast, in Fig. 5(b) a system of nine points is shown

that has been optimized for distinctiveness at a relatively
low noise level (d ¼ 0:1). Here maximizing distinctiveness is
not equivalent to maximizing summed distance, because of
the relatively low noise level. To see why the noise level
determines whether it is equivalent, consider a small change
to the configuration, for instance moving the central point
a bit to the left. Such a change will decrease the distance to
some points, and increase the distance to some other
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Fig. 6. Figure (a) shows a local optimum of a nine-signal repertoire optimized for distinctiveness. What would happen if we move the signal at the right

end of the interval in (a) horizontally to left? The probability of correct recognition of that signal, a, is inversely proportional to the sum of the f -scores of

all other signals (see Eq. (5)). Figures (b) and (c) show why this probability is in a local optimum with a at its current location. Parameters: d ¼ 0:3.
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points. Now, note that the distance-to-confusion function
is approximately linear for relatively small distances (see
Fig. 1). Therefore, maximizing distinctiveness corresponds
approximately to maximizing average distances only if
distances are small relative to the noise level, or equiva-
lently, if the noise level is high relative to the distances.

4.3. Distinctiveness is a non-linear function of distances

Fig. 6 shows another two-dimensional, nine signal
system. It has, after running the hill-climbing algorithm,
converged to a local optimum (a). Why is this configura-
tion stable? Consider moving the signal a at the left-most
end of the interval, along that same interval. For each
alternative x-coordinate of that signal, we can calculate the
estimated probability of confusion with other signals. The
f -values for all the other signals are plotted in figure (b).
For instance, the f -value of the central-right signal (its
contribution to the confusion about a) goes from very low
if a is at the left-most end of the interval to very high (0:3) if
a is at the right-most end of the interval.
The probability of correct recognition of a, and hence its

contribution to the total distinctiveness, is inversely
proportional to the sum of all f -values. In Fig. 6(c) we
therefore give a plot of the sum of all these values (with the
contribution of each signal indicated in different colors).
That sum is in a local minimum at the actual location of a,
which suggests that—at least initially—distinctiveness will
not improve by shifting a to the left. This is not the whole
story, though, because the probability of correct recogni-
tion of the other signals will also change. Nevertheless, the
distinctiveness of a repertoire is a non-linear combination
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of the distances between the signals. Due to this non-
linearity, the resulting stable configurations are sometimes
counter-intuitive.

4.4. Why trajectories stretch out

Finally, in Fig. 7 we explore the question of why many
trajectories in our simulations stretch out. In figure (a) we
show five signals (in the bottom-left corner there are two
signals on top of each other). The signals are points in the
acoustic space, which we will here interpret as stationary

trajectories of some arbitrary length. The graph shows the
configuration that maximizes the summed distance between
the signals. The figure also gives the distance matrix that
gives the distance between every pair of signals. The values
are equal to the Euclidean distance (the distance as
measured with a ruler),

ffiffiffi
2
p
� 1:4 (across the diagonals),

1 (horizontally or vertically) and 0 (for the pair in the
bottom-left corner). The average distance is d ¼ 10:2=
10 ¼ 1:02.

Fig. 7(b) shows an alternative configuration, with the
fifth signal in the center. The distance matrix shows that
the distance of the fifth signal to the bottom-left corner has
increased, but at the expense of the distances to the three
other corners. As a result, the average distance has actually
gone down to d ¼ 0:96. The reason is that this configura-
tion does not make optimal use of the longest available
distances over the diagonal. Importantly, however, at low
noise levels, the distinctiveness of this configuration is in
fact higher than of the configuration in (a). The reason is
that with relatively little noise and long distances, the
distinctiveness-distance function flattens out. Hence, there
is more to be gained from avoiding confusion between the
fifth and the bottom-left signal, then there is from
maintaining the excessive ‘‘safety margin’’ with the other
signals. In other words, the configuration in (b) sacrifices
some average distance, to gain a lower average confusion
probability.
Fig. 7(c) shows yet another configuration, now with the

fifth trajectory stretched out over the whole diagonal.
As is clear from the given distance matrix, this configura-
tion yields larger distances than in (b). To go from (b) to
(c) there is no trade-off. The distances from the central,
fifth signal to the top-left and bottom-left corners
can be increased without decreasing the distances to the
other two signals. The reason is that the distance between a
stationary trajectory t and a stretched out trajectory t0 is
equal to the distance between t and the centroid of t0 when t

is on a line through all the points of t0, but larger when it
is not.
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Fig. 8. A repertoire in a two-dimensional acoustic space optimized for distinctiveness. Common parameters: T ¼ 9;P ¼ 20; 2d ;S ¼ 0:2;r ¼ 0:2; d ¼ 0:25.
Figures (a–d) show the configurations at various stages of the hill-climbing process. Figures (e–m) show each of the individual trajectories in figure (d).
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Fig. 9. Repertoire in a two-dimensional and three-dimensional acoustic space optimized for distinctiveness.
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In Figs. 8 and 9 we show results from running the basic
model under various parameter settings, including with
repertoires with many trajectories and with three-dimen-
sional acoustic spaces. These results show that the
observations made in the simple systems above, generalize
to a wide range of conditions.
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4.5. Locally optimal repertoires are ESSs

So far, we have seen that repertoires of signals with a
temporal structure will, when optimized for distinctiveness,
stretch out. Rather than staying away as far as possible
from other trajectories along its whole length, each
trajectory will be close to some trajectories for some of
its length, and close to other trajectories elsewhere. In
qualitative terms, these systems show superficially combi-
natorial structure.

We have not, however, dealt with the question whether
an innovation is able to invade and become established in a
population where it is very infrequent. To investigate these
questions, we change the definition of distinctiveness to tell
us something about pairs of languages. This way we can
ask the question: how well will a repertoire R0 (with T

trajectories) do when communicating with a repertoire R?
Pairwise distinctiveness D is defined as follows:

DðR;R0Þ ¼
XT

t¼1

f ðdðRt;R
0
tÞÞPT

t0¼1 f ðdðRt;R
0
t0 ÞÞ

. (14)

The quantity DðR;R0Þ can be interpreted as the estimated
probability of a signal uttered by a speaker with repertoire
R, to be correctly interpreted by a hearer with repertoire R0.

When we now consider the invasion of a mutant

repertoire R0 into a population with resident repertoire R,
four measures are of interest: DðR;RÞ, DðR;R0Þ, DðR0;RÞ
andDðR0;R0Þ. That is, how well does each of the repertoires
fare when communicating with itself or with the other
repertoire, in the role of speaker or of hearer? Specifically,
for the invasion of R0, it is necessary that DðR0;RÞ4
DðR;RÞ or DðR;R0Þ4DðR;RÞ, or some weighted combina-
tion of these requirements. That is, a successful mutant
must do better against the resident language, than the
resident language does against itself.

This situation turns out to be very common. Consider the
above one-dimensional example: The configuration on the
right (B) is better on all accounts. Obviously, there will be
less confusion between its signals because they are further
apart (when x ¼ 0:1 and d ¼ 0:1, DðAÞ ¼ DðA;AÞ ¼ 0:70
vs. DðB;BÞ ¼ 0:84). But configuration B will even do better
when communicating with A, both as a hearer
(DðA;BÞ ¼ 0:78) and as a speaker (DðB;AÞ ¼ 0:76).

The hillclimbing-criterionðR;R0Þ is redefined as fol-
lows in each of the conditions ‘‘hearer benefits’’ (HB),
‘‘speaker benefits’’ (SB) or ‘‘equal benefits’’ (EB):

HB: DðR;R0ÞXDðR;RÞ, (15)

SB: DðR0;RÞXDðR;RÞ, (16)

EB: 1
2
ðDðR0;RÞ þDðR;R0ÞÞXDðR;RÞ. (17)
It turns out that all the stable configurations we found in
simulations with the optimization criterion (OP, Eq. (8)),
are also stable under criteria HB, SB and EB. Thus, locally
optimal repertoires are evolutionary stable strategies.

4.6. Not all ESSs are locally optimal

ESSs are strategies that cannot be invaded by any other
strategy. In evolutionary game theory, ESSs are therefore
considered likely outcomes of an evolutionary process.
However, if there are many ESSs in a given system, the
initial conditions will determine which ESS will emerge
(‘‘equilibrium selection’’). In our simulations with the HB,
SB and EB conditions, we also observe ESSs that do not
correspond to the locally optimal configurations that we
found with the OP condition.
Fig. 10(a–d) show the configuration of the repertoire at

different numbers of iterations of the hill-climbing algo-
rithm under the HB condition. Fig. 10(i) gives the pairwise
distinctiveness measures for each combination of these four
configurations. At the diagonal of this matrix are the
distinctiveness scores of each configuration. As is clear
from this matrix, each next configuration can invade a
population with the previous repertoire. In boldface we see
the approximate evolutionary trajectory (the actual steps in
the simulation are much smaller). Figure (d) is an ESS.
However, figures (e–f) show that this configuration is not
stable when the OP criterion is used. Fig. 10(j) gives the
pairwise distinctiveness measures for each combination of
these five configurations. The diagonal elements in this
matrix are the highest values in their row and column,
which shows that none of these configurations could have
invaded a population using (d) under the HB (or SB, or
EB) condition. Nevertheless, once adopted, communica-
tion is more successful with every next configuration (as the
diagonal elements show). The locally optimal configuration
in (f), however, is an ESS under all four conditions.
We find suboptimal ESSs in simulations with the SB and

EB conditions as well. Fig. 11 shows stable configurations
that emerge in each of the four conditions. Interestingly,
these suboptimal ESSs disappear when a different distance-
to-confusion function is used. We used

f ðdÞ ¼
1

1þ eð1=dd2
Þ
, (18)

instead of Eq. (4). In this, and other simulations (two-
dimensional and three-dimensional) with that same func-
tion, all ESSs observed show the same type of superficially
combinatorial phonology that we found in the OP
condition. This shows among other things that the exact
behavior of systems as complex as this one can depend on
the details of their implementation.

4.7. Individual-based model

As a final test of the appropriateness of the basic model,
we studied an individual-based simulation of a population
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D* =

a

a 0.250 0.255 0.256 0.257

b 0.257 0.411 0.412 0.414

c 0.260 0.412 0.443

d 0.262 0.415 0.449 0.458

D* =

d

d 0.458 0.445 0.374 0.353 0.354

e 0.445 0.465 0.391 0.368 0.370

f 0.4030 0.417 0.599 0.563 0.569

g 0.387 0.400 0.564 0.629 0.614

h 0.389 0.402 0.570 0.615 0.634

0.445

b c d

e f g h

Fig. 10. Locally optimal repertoires are ESSs, but not all ESSs are locally optimal. (a–d) show configurations in an evolutionary simulation with the

hearer benefit condition (HB, DðR;R0Þ4DðR;RÞ) at various time steps; (d) is an ESS in the HB condition; (e–h) show results from a simulation in the

optimization condition (OP, DðR0;R0Þ4DðR;RÞ) that used (d) as its initial condition. (h) is an ESS in all conditions (OP, HB, SB, EB) considered. (i) shows

a matrix that gives the pairwise distinctiveness scores for every combination of configurations in (a–d); (j) the matrix that gives the pairwise distinctiveness

scores for every combination of configurations in (d–h). The approximate evolutionary trajectory is indicated with boldface in these matrices. Parameters

are: T ¼ 9, P ¼ 10, D ¼ 2, N ¼ 0:05, S ¼ 0:1.
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of agents that each try to imitate each other in noisy
conditions. This simulation is similar to the model
described above, but now each agent in the population
has its own repertoire, and it tries to optimize its own
success in imitating and being imitated by other agents of
the population.

This version of the model is similar to the imitation
games of de Boer (2000). That paper only modeled point-
like signals (vowels) and did not investigate combinatorial
phonology. The game implemented here is a slight
simplification of the original imitation game. First, all
agents in the population are initialized with a random set of
a fixed number of trajectories, using the ‘‘elaborate’’
initialization scheme from Section 3.5. Then for each
game, a speaker is randomly selected from the population.
This speaker selects a trajectory, and makes a random
modification to it. Then it plays a number of imitation
games (50 in all simulations reported here) with all other
agents in the population. In these games, the initiator utters
the modified trajectory with additional noise. The imitator

finds the closest trajectory in its repertoire and utters it with
noise. Games are successful if the imitator’s signal is closest
to the modified trajectory in the initiator’s repertoire. If it
turns out that the modified trajectory has better imitation
success than the original trajectory, the modified trajectory
is kept, otherwise the original one is restored.
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Fig. 11. Not all ESSs are locally optimal. Results from four simulations, each with the initial condition as in Fig. 10(a). Different payoff functions lead to

different ESSs, although for all payoff functions considered, locally optimal configurations as in (a) are stable. Parameters are:

T ¼ 9;P ¼ 10;D ¼ 2; r ¼ 0:2; d ¼ 0:2;S ¼ 0:1.
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Fig. 12. Comparison of population-based models with the optimization model. Frame (a) shows the (five) trajectories of four agents (from a population of

ten). Notice the similarities with the optimized trajectories in frame (b).
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For vowel systems, it has been shown that optimizing a
single repertoire leads to similar systems as a population-
optimization system (compare de Boer, 2000; Liljencrants
& Lindblom, 1972). It can be shown that for trajectories
the same is true. This is illustrated in Fig. 12.

In this figure the left frame shows the system of five
trajectories that resulted from playing imitation games in a
population. The right frame, for reference, shows a system
of five trajectories that resulted from optimizing distinc-
tiveness as in the basic model. It can be observed that in
both cases, the corners are populated by four trajectories,
which are bunched up. The fifth trajectory, in contrast,
follows the diagonal. As before, an analysis in terms of
phonemes suggests itself: the four corners are basic
phonemes, while the fifth trajectory uses one of the corners
as a starting phoneme and the opposite corner as the
ending phoneme. Although less clean and not fully
conclusive, the results from the individual-based model
seem to be consistent with the observations from the basic
model.
4.8. Measuring combinatorial phonology

So far, we have relied on an intuitive notion of what it
means for a repertoire of trajectories to show combinator-
ial phonology. As the paper investigates the emergence of
categorical and combinatorial coding on a qualitative level,
this has not been an obstacle. Fig. 8(e–f), by showing all
individual trajectories, give perhaps the most convincing
example: every trajectory in the final repertoire (Fig. 8(d))
shares approximate begin or end points with some other
trajectory (often the corners of the acoustic space), and one
can uniquely characterize each trajectory by giving the
sequence of corner points it visits (that is, for recognition;
for reproducing the sounds we would need more informa-
tion). This was still impossible in the earliest stages of the
simulation (Fig. 8(a)).
However, for a more quantitative understanding of the

emergence of combinatorial phonology, a numerical
measure of the degree of recombination would be useful.
When the basic building blocks of the repertoire are
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known, it is straightforward to give a measure of the degree
of combination. An example would be the number of times
a given building block is being reused: j ¼ N=k, where j is
the measure of recombination (phonemicity), N is the
number of words in the repertoire and k the number of
building blocks.

A difficult problem, however, is finding the basic
building blocks, given a repertoire of signals. The tradi-
tional linguistic procedure for identifying phonemes in an
unknown language relies on the notion of ‘‘minimal pair’’:
a pair of words that have different meanings and differ
only in one sound. This analysis might seem straightfor-
ward, but when put to use in an automatic phoneme
discovery procedure, a number of pitfalls emerge. First of
all, it already makes use of an existing set of basic building
blocks (usually the phonetic categories as defined by the
International Phonetic Association). Secondly, it needs to
decide what is meaningful variation and what is variation
caused by automatic influence from neighboring sounds.
However, this can only be deduced from the articulation,
and the use of these sounds in a language, not from the
signals themselves. Although infants do learn which sounds
are phonemes and which sounds are allophones, they do
not do this on the basis of the sounds alone, they also make
use of the meanings of the words in which they occur and
of proprioception of their own articulations. Such in-
formation is not available to an automated phoneme-
detection procedure.

A final problem in the analysis is how to decide that two
building blocks are equal. In many cases of allophony, it
can be argued that the allophones are instances of the same
building block, because there are no minimal pairs and
their articulation is very similar. However, the case is not
always so clear-cut, and it is therefore not uncommon to
find disagreement amongst linguists about the exact set of
building blocks that are used in a language.

In the case of artificially generated sets of trajectories,
these problems are even more apparent. One needs to make
assumptions about what kind of building blocks are
possible, what constitutes natural behavior for a trajectory
between building blocks, and how to define similarity
between building blocks. In the analyses that we have
presented, we have implicitly assumed that building blocks
are points, that trajectories tend to follow straight lines
from point to point and that points that are close together
are the same building block.

Appendix A presents an approach to calculating the
degree of phonemicity of a repertoire of trajectories, based
on such simplifying assumptions. The quantitative results
from applying this approach to random, optimized and
hand-designed systems of trajectories support the qualita-
tive observations we have relied on in the main text.

5. Discussion and conclusion

When optimizing a repertoire of temporally extended
trajectories in an abstract acoustic space, the trajectories
tend either to occupy the corners of the available space or
to stretch out from corner to corner. It appears as if
trajectories become far apart where possible and close

together where necessary. A repertoire with this structure
can be analyzed as reusing certain points as building blocks
of its trajectories and thus to have combinatorial structure.
Such a system also has discrete coding, because the
building blocks are clearly separate and the trajectories
between them stretched out and predictable from the
position of the building blocks. As there is nothing in the
trajectory that explicitly codes discreteness or combinator-
ial structure, and as agents that would use these repertoires
of trajectories need not be aware of their structure, their
combinatorial nature is purely superficial.
Most of the results presented here were obtained through

direct optimization of repertoires of trajectories. However,
we have also shown that similar repertoires of trajectories
can emerge in a population of agents that try to imitate
each other as well as possible. Apparently agents that strive
for maximum success in imitation in noisy conditions,
using information from simple interactions (imitation
games) alone, converge towards repertoires that are similar
to repertoires that are optimized directly.
Finally, we have shown that repertoires of trajectories

that are optimized for acoustic distinctiveness (and thus
combinatorial) are evolutionary stable. Agents that have a
repertoire of trajectories that is more distinctive can invade
a population of agents that have less distinctive (but
otherwise similar) repertoires, at least if the only fitness
criterion is the robustness to acoustic noise of their
repertoires. Conversely, a population of agents with an
optimal repertoire cannot be invaded by agents with less
optimal repertoires. We have also shown that there is a
path of ever increasing fitness towards the optimal (and
combinatorial) repertoire.
Our model differs from other attempts to explain

combinatorial speech in several ways. First of all, both
holistic and (superficially) combinatorial signals have
temporal structure. All signals in the model are of the
same duration. Secondly, our model does not use
articulatory targets. The resulting structure is purely
emergent and therefore called ‘‘superficial’’. In fact, no
distinction is made between holistic and combinatorial
signals in the model; the difference only becomes apparent
when analyzing the structure of the repertoires.
We argue that agents can make use of this structure to

evolve towards productive use of recombination. When the
structure becomes available in the population, it becomes
advantageous for agents to make use of it. They can use it
to store the repertoire of trajectories more compactly, to
perceive and produce trajectories in a more robust way and
eventually to more easily create new trajectories. In this
way, agents that use combinatorial structure productively
can invade a population of agents that do not. This is
only possible when there already exists a repertoire that
is superficially combinatorial. Only then is there a path
of continuously increasing fitness towards productive
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combinatorial coding, and eventually, to phonemic speech.
We have shown that optimization for acoustic distinctive-
ness can result in such a repertoire.

Natural language phonology is categorical and combi-
natorial. What we have shown in this paper is that these
properties have functional significance: they aid the reliable
recognition of signals by the hearer. We have also shown
that there is a path that leads from a signal system without
these properties, to one that can be viewed as having those
properties. Crucially, we have shown that each step on this
path represents an improvement, both when it first appears
in a population and when it is already common.

It turns out that a system that shows categorical and
superficially combinatorial structure is advantageous even
for a population of speakers and listeners that is not aware
of this structure. We note that these results are consistent
with several different scenarios on the origins of combina-
torial speech. In particular, it is not necessary for
combinatorial phonology to have emerged purely through
genetic evolution. Rather, we see natural selection as a
force that has shaped the parameters of the self-organizing
process, and cultural self-organization as a process that
determined which genetic adaptations would be beneficial.
Hence, self-organization is the substrate of evolution

(Boerlijst & Hogeweg, 1991; Kirby & Hurford, 1997;
Smith, 2004; Waddington, 1939).
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Appendix A

In this paper we have only shown graphically and
qualitatively that the repertoires emerging from our
simulations show combinatorial phonology. To allow more
quantitative statements, and evaluate the statistical sig-
nificance, we need a numerical value that expresses the
degree to which building blocks are reused in the system.
Such a measure will be called the system’s phonemicity.
Unfortunately, defining such a measure raises many
conceptual and technical issues, and no prior work exists
on which we can base ourselves.
In linguistics, researchers have never found it necessary
to measure the phonemicity of a language directly from the
speech signals. All languages use recombination of a small
set of signals to create words. It is not always possible to
determine the exact number of contrastive building blocks
unambiguously and there is even some controversy about
what exactly make up the building blocks of speech.
However, it is never necessary to determine the building
blocks and thus the degree of phonemicity from the
acoustic properties of the signal alone, as word meaning is
always used in this procedure through the use of minimal
pairs.
In animal behavior research, it would be useful to be able

to have a measure of phonemicity in the study of the
structure and the complexity of animal vocalizations, but it
is clear that the minimal pair procedure is of little use here.
A certain degree of recombination appears to be used in
many animal signalling systems, but it is highly unlikely
that these systems are as complex as human speech. All
studies that investigate the complexity of animal call
systems that we are aware of use a set of heuristics based
on the ability of human observers to detect patterns in
spectrograms. Hence, a well-defined measure of phonemi-
city also lacks in the biological literature.
Probably the best conceptual basis for such a measure is

that of the compressibility of the underlying set of signals.
A purely holistic set of signals cannot be compressed much,
while a completely combinatorial set of signals should be
most compressible. Of course, the set of signals should still
contain enough diversity such that different signals can be
distinguished from each other.
Measuring compressibility in real signals is problematic,

however. Like the trajectories in our model, the features of
real signals vary on continuous scales (amplitude, fre-
quency, phase, etc.). Traditional (lossless) compression
algorithms based on redundancy in strings of discrete
symbols are therefore not usable. Nevertheless, there is
redundancy in continuous data—points on a smooth
trajectory can for instance be predicted from the previous
points—and an algorithm that measures phonemicity
should make use of this.
When measuring phonemicity it is thus most useful to

think of control points and predictable trajectories between
these control points. In the measure that will be defined
below, we will assume, for simplicity, that there are only
two control points per trajectory (the start and endpoints).
We further assume that a trajectory moves more or less
along a straight line between two control points. This is not
strictly true for the kinds of system that emerge from the
optimization process, as sometimes trajectories appear to
move towards one point at first, and then towards another.
Our measure therefore systematically underestimates the
true phonemicity of emerged systems.
If a system shows combinatorial structure, it is expected

that start and endpoints of trajectories tend to cluster
together. Intermediary points on a trajectory are expected
to be more spread out through the available space. Using
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Fig. 13. Optimized repertoires always show a significantly higher degree

of phonemicity (as defined in the appendix) than random repertoires.

Shown are the frequencies (y-axis) with which a certain degree of

phonemicity (x-axis) is obtained in 100 runs for each condition.

Conditions varied in the number of trajectories per repertoire (4, 5, 9

and 30) and whether or they were randomly chosen or optimized (the OP

criterion from Section 3.5). For all repertoire sizes larger than four, the

differences between the random and optimized conditions are highly

significant.
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Liljencrants and Lindblom’s (1972) measure of dispersion,
we can then define a measure of phonemicity. The average
dispersion of all start and endpoints, E, can be calculated
as follows:

E ¼
1

2NðN � 1Þ

XN

i¼1

XN

j¼iþ1

½Dði1; j1Þ þDði1; jLÞ þDðiL; j1Þ þDðiL; jLÞ�.

The average dispersion of all other points on the
trajectories, P can be calculated analogously

C ¼
1

NðN � 1ÞðL� 2Þ

XN

i¼1

XN

j¼iþ1

XL�1
k¼2

½Dðik; jkÞ þDðiL�kþ1; jkÞ�.

The dispersion of two points, Dðp1; p2Þ is defined as follows:

Dðp1; p2Þ ¼
1

eþ kp1 � p2k
2
,

where p1 and p2 are the points between which the measure
is calculated, and � is a small value to prevent infinite values
for overlapping points. A value of 0:01 has been used for
the measurements presented here. A measure of phonemi-
city is then given by

P ¼ log10
E

C
.

This measure gives a higher value when a system of
trajectories shows stronger combinatorial structure.

In order to investigate whether the optimization
procedure described in the paper results in more combina-
torial structure, the phonemicity values of the initial,
random, trajectories are compared with those of optimized
trajectories. The results are given in Fig. 13. For systems of
4, 5, 9 and 30 trajectories, the random data set consisted of
1000 sets of signals. The optimized data set consisted of 100
sets of trajectories that had been optimized for 100; 000
steps.

As the figure shows, for systems containing more than
four signals the phonemicity measure gives a higher value
for optimized systems than for random systems. This is
significant with po0:05 using the Kolmogorov–Smirnov
test. For random trajectories, the phonemicity has a peak
around 0 for all system sizes. This indicates approximately
equal average dispersion of start- and endpoints and of
intermediary points on a trajectory. For optimized systems
with four trajectories, there is a large peak near the value of
zero, corresponding to systems that have all four trajec-
tories bunched up in the four corners of the space.
However, smaller peaks are observed for higher values of
phonemicity, corresponding to systems where one or more
trajectories go from one corner of the space to another. For
reference, completely combinatorial systems of 4, 9 and 16
trajectories (using 2, 3 and 4 fully connected start- and
endpoints, respectively) have phonemicity values of 0.50,
0.83 and 0.93, respectively. These results show that
optimization of distinctiveness of trajectories does reliably
result in systems that show (superficial) combinatorial
structure.
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