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Abstract
In this paper we present three design principles of language – experience, heterogeneity and 
redundancy – and present recent developments in a family of models incorporating them, namely 
Data-Oriented Parsing/Unsupervised Data-Oriented Parsing. Although the idea of some form of 
redundant storage has become part and parcel of parsing technologies and usage-based linguistic 
approaches alike, the question how much of it is cognitively realistic and/or computationally 
optimally efficient is an open one. We argue that a segmentation-based approach (Bayesian Model 
Merging) combined with an all-subtrees approach reduces the number of rules needed to achieve 
an optimal performance, thus making the parser more efficient. At the same time, starting from 
unsegmented wholes comes closer to the acquisitional situation of a language learner, and thus adds 
to the cognitive plausibility of the model.
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1 Introduction: Three design principles of language

Modern linguistic theory has evolved along the lines of the principle of categoricity: knowledge of 
language is characterized by a categorical system of grammar. Numbers play no role (Bod, Hay, & 
Jannedy, 2003, p. 1). This idealization has been fruitful for some time, but it underestimates human 
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language capacities. There is a growing realization that linguistic phenomena at all levels of repre-
sentation display properties of continua and show markedly gradient, probabilistic behaviour (see, 
e.g. Arnon & Snider, 2010; Bybee, 2006; Gahl & Garnsey, 2004; Tremblay & Baayen, 2010 – for 
discussion see also Gahl & Garnsey, 2006; Newmeyer, 2006).

An assumption often going hand in hand with the categoricity assumption is that linguistic 
knowledge is organized and represented mentally in an optimally parsimonious manner, namely by 
minimizing the amount of information encoded redundantly. Although this ‘parsimony of repre-
sentation’ principle can yield important insights in organizational processes of the mind, it cannot 
be applied in an unconstrained manner, because language users do seem to produce and interpret 
language with what seem to be redundant structures with respect to their contents.

Finally, many current linguistic theories adhere to some form of a ‘principle of homogene-
ity’, assuming repertoires of building blocks (phones, words, rules), of roughly similar shape 
and size.

In this paper, we argue in favour of a family of models that violates all three of these principles: 
Data-Oriented Parsing (DOP; Bod, 1998; Scha, 1990). DOP includes probabilistic processing and 
learning models that allow fragments of many different shapes and sizes, partially overlapping 
with each other, to become the building blocks of language; DOP relaxes the constraints on repre-
sentations dictated by the principles of categoricity, parsimony and homogeneity, while greatly 
reducing the complexity of the learning mechanism.

Our aim is not just to account for gradient linguistic phenomena at the ‘computational’ level (in 
Marr’s (1982) hierarchy of modelling approaches); rather, in this paper, we investigate the applica-
bility of DOP as a cognitive model at Marr’s ‘processing’ level. In the following we will first 
briefly discuss three alternative design principles: experience, heterogeneity and redundancy. We 
then briefly review how DOP implements those principles, discuss recent extensions of DOP to 
unsupervised learning and end with some new directions in DOP-style models of language 
acquisition.

1.1 Messy, spurious and redundant
Following work by Spivey and Tanenhaus (1998), Gahl and Garnsey (2004), Bresnan (2007) and 
many earlier arguments (see Bod et al., 2003, for an overview and historical references), we view 
probabilities as an inherent part of the human language system. The language processing system is 
set up in such a way that, whenever an instance of a linguistic structure is processed, it is seen as a 
piece of evidence that affects the structure’s probability distribution.

Probabilistic models of language, however, are not just about ‘performance’ either, as a topic that 
could be studied separately from linguistic ‘competence’. The inseparability of probabilities from 
competence has become most obvious through the study of wide-coverage parsing automatic gram-
matical analysis that should be able to handle any sentence in a given language (Manning & Schütze, 
1999). Research in this field has demonstrated that grammars that are general enough to cover the 
vast majority of sentences become so permissive that they license a prohibitive number of analyses 
for every sentence and deem almost any word sequence grammatical. Hence, even to account for the 
data dearest to the theoretical linguists in the categorical tradition, weights or probabilities are indis-
pensable (Abney, 1996). Our first principle, therefore, is the principle of experience:

Principle 1 (Experience): Knowledge of language is sensitive to distributions of previous lan-
guage experiences. An adequate model of language processing should, whenever an expression 
is processed, treat it as a piece of evidence that affects the probability distributions over 
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linguistic structures. New expressions are constructed by probabilistically generalizing over 
previous expressions.

The assumption of the redundancy of representation1 also goes beyond developing a modelling 
technique. We claim that language users keep track of complex structures that might be built up 
from smaller known structures, because some part of their application (e.g. their frequency or their 
specific meaning) cannot be reduced to the composition of the smaller known structures. While 
many linguists agree that there is a need to integrate probabilities into linguistics, the question 
where probabilities are represented is often still answered with reference to the principle of parsi-
mony of representation. In this paper, the answer to the question where probabilities are repre-
sented is: Everywhere. Probabilities are relevant at all levels of representation, from phonetics and 
syntax to semantics and discourse and at all levels of abstraction: from complete, holistic Gestalts 
to the minimal building blocks.

In syntactic structure, for example, there is evidence that the units that carry probabilities are of 
many different sizes and shapes. For example, suppose that we want to produce a sentence corre-
sponding to a meaning of asking someone’s age. There may be several sentences with such a mean-
ing, such as How old are you?, What age do you have? or even How many years do you have? Yet 
the first sentence is more acceptable than the other ones in that it corresponds to the conventional 
way of asking someone’s age in English. Note that the difference is not due to the probabilities of 
the individual words, context-free productions or even the construction How ADJ are you?, where 
ADJ could be filled with any adjective. This is clear from the fact that the conventional way to ask 
about another personal attribute, weight, is not How heavy are you? It really seems that How old 
are you? is stored as a unit, and carries a weight as a unit. Evidence for an analysis is easily found 
in a representative corpus of English.

There are many more examples in the Construction Grammar and related literature of multi-
word units that must be assumed to be stored as units in the language user’s brain (see, e.g. Culi-
cover & Jackendoff, 2005). Importantly, they range from complete sentences to two-word 
combinations, from semantically and syntactically completely regular (such as above), to com-
pletely idiosyncratic (such as by and large), and from completely lexically specific, to quite abstract 
(such as V POSS way PP, as in He cheated his way out of jail – see Verhagen, 2005). Our second 
design principle is therefore:

Principle 2 (Heterogeneity): An adequate model of human language processing must allow for 
a heterogeneous store of elementary units, ranging from single words, and basic combinatory 
rules, to multi-word constructions with various open slots and complete sentences.

The principles of experience and heterogeneity lead to our third design principle, which can be 
seen as a logical consequence of the first two, but is nevertheless surprising to many theorists and 
important enough to mention separately: redundancy. We argued that How old are you? is likely to 
be stored as a unit, but it is also perfectly regular and there is no denying that all of its component 
parts can perfectly function as independent units and combine with other elements. This implies 
that the exact same sentence, with the same grammatical structure, can in fact be derived in mul-
tiple ways (this is different from structural ambiguity, where different derivations assign different 
grammatical structure to a sentence).

Sometimes, such alternative derivations will correspond to differences in meaning, such as in 
she kicked the bucket, where a derivation that takes kick the bucket as a unit also carries its idio-
matic meaning (‘to die’), while a derivation that starts from the individual words will arrive at the 
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literal meaning. All syntactic theories allow for multiple items for the same words to be stored in 
the lexicon to account for this.

However, we will go a step further and also allow for multiple (in fact, many) alternative deriva-
tions of the same sentence, with the same structure and the same semantics. In computational lin-
guistics, such inconsequential ambiguity is sometimes termed spurious ambiguity. Note that, by its 
very nature, it is logically impossible to provide semantic or syntactic evidence for or against spuri-
ous ambiguity. In theoretical linguistics it is typically ruled out with an appeal to parsimony of 
representation. However, representational parsimony comes at a cost: an increase in the complex-
ity of the mechanisms needed to process, acquire, recognize and produce linguistic structures. We 
argue instead for a parsimony of mechanism. By allowing for a massively redundant storage of 
linguistic structures, we can account for language use and acquisition using surprisingly simple 
mechanisms, as we will show in the remainder of the paper.

Outside of the usual sources of evidence for theoretical linguistics, there is in fact plenty of 
evidence for the redundancy that we assume. A first source of evidence is historical linguistics. 
A well-attested example of syntactic change is the case of kind of constructions in English (Hop-
per & Traugott, 2003). Kind obviously started off as a noun, but gradually got reanalysed, jointly 
with of as an adjective and sometimes even as an adverb, as in I kind of wanna go home. As kind 
of cannot be a noun in this sentence, two changes must have occurred simultaneously: a reanaly-
sis of the constituent-structure (where kind and of are joined), and a recategorization (from noun 
to adverb). Such changes are much easier accounted for when we assume a model where the 
subtree NP[ N[ kind] PP[ PREP[of] NP]] is already a permissible building block even before the rea-
nalysis, so that reanalysis only has to apply to a single complex whole as opposed to a chain of 
derivative operations. Other evidence comes from psycholinguistics, where it is found that reac-
tion times on a grammatical judgement tasks are influenced by the frequency of occurrence of 
any substring of the test sentence (up to length 4), strongly suggesting there is at least a memory 
trace of strings of any length (cf., Arnon & Cohen-Priva, this issue; Bannard & Matthews, 2008; 
Bod, 2001; Tremblay & Baayen, 2010). We include such redundancy as a design feature of our 
model:

Principle 3 (Redundancy): An adequate model of human language processing must be mas-
sively redundant, allowing for many different derivations of the same sentence, with many deri-
vations yielding the same grammatical and even semantic structure.

We thus arrive at three related propositions about models of human language processing that run 
counter to central (although often implicit) assumptions in theoretical linguistics: the assumptions 
of categoricity, homogeneity and parsimony. Our approach, in contrast, emphasizes that the lan-
guage faculty is probabilistic, heterogeneous and redundant. This might upset theorists that have, 
with Chomsky (1957, p. 48), hoped for linguistic theory to eventually uncover an elegant underly-
ing system of regularities like the Periodic Table in chemistry. We believe much of language has 
turned out to be fundamentally erratic, messy and spurious, but we will show that one can never-
theless build elegant models that take these facts of language into account.

2 Exploiting redundancy: Data-Oriented Parsing

A first approach that takes the direct consequence of the principles given above is DOP (Bod, 
1992, 1998; Bod, Scha, & Sima’an, 2003; Goodman, 2003; Kaplan, 1996; Sangati & Zuidema, 
2011; Scha, 1990; Sima’an, 1996; Zuidema, 2007; a.o.). This approach analyses and produces 
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new sentences by combining fragments from previously analysed sentences stored in a ‘corpus’. 
Fragments can be of arbitrary size, ranging from simple context-free rules to entire trees, thereby 
allowing for both productivity and idiomaticity. The frequencies of occurrence of the fragments 
are used to compute the distribution of most probable analyses for a sentence (in perception), or 
the distribution of most probable sentences given a meaning to be conveyed (in production).

2.1 DOP’s building blocks: Treelets of arbitrary size and shape
What does such a general model, which takes all fragments from previous data, look like? In this 
section, we will illustrate a DOP model for syntactic surface constituent trees, although we could 
just as well have illustrated it for phonological, morphological or other kinds of representations. 
Consider a corpus of only two sentences with their syntactic analyses given in Figure 1 (we leave 
out some categories to keep the example simple).

On the basis of this corpus, the (new) sentence She saw the dress with the telescope can, for 
example, be derived by combining two fragments from the corpus – which we shall call treelets 
or subtrees – as shown in Figure 2. Note that there is no explicit distinction between words and 
structure in the subtrees. The combination operation between subtrees will for our illustration be 
limited to label substitution. This operation, indicated as °, identifies the leftmost non-terminal 
leaf node of the first subtree with the root node of the second subtree. That is, the second subtree 
is substituted on the leftmost non-terminal leaf node of the first subtree provided that their cat-
egories match.

Figure 1.  An extremely small corpus of two phrase-structure trees.

Figure 2.  Analysing a new sentence by combining subtrees from Figure 1.
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Thus in Figure 2, the sentence She saw the dress with the telescope is interpreted analogously to 
the corpus sentence She saw the dog with the telescope: both sentences receive the same phrase 
structure where the prepositional phrase with the telescope is attached to the VP saw the dress.

We can also derive an alternative phrase structure for the test sentence, namely by combining 
three (rather than two) subtrees from Figure 1, as shown in Figure 3. We will write (t ° u) ° v as t ° 
u ° v with the convention that ° is left-associative.

In Figure 3, the sentence She saw the dress with the telescope is analysed in a different way 
where the PP with the telescope is attached to the NP the dress, corresponding to a different mean-
ing than the tree in Figure 2. Thus, the sentence is ambiguous in that it can be derived in (at least) 
two different ways, being either analogous to the first tree or to the second one in Figure 1.

Note that an unlimited number of sentences can be generated by combining subtrees from the 
corpus in Figure 1, such as She saw the dress on the rack with the telescope, She saw the dress with 
the dog on the rack with the telescope, etc. Thus we obtain unlimited productivity by finite means. 
Formally, this instance of DOP is equivalent to a Tree-Substitution Grammar (see Bod, 1998, and 
also Post & Gildea, this issue, and references therein).

2.2 How to enrich DOP with probabilities: The original approach
By having defined a method for combining subtrees from a corpus of previous trees into new trees, 
we effectively established a way to view a corpus as a tree generation process. This process 
becomes a stochastic process if we take the frequency distributions of the subtrees into account. 
For every tree and every sentence we can compute the probability that it is generated by this sto-
chastic process. Let us illustrate the generation process by means of an even simpler corpus. Sup-
pose that our example corpus consists of the two phrase-structure trees in Figure 4.

To compute the frequencies of the subtrees in this corpus, we need to define the (multi)set of 
subtrees that can be extracted from the corpus trees, which is given in Figure 5.

As explained above, by using the substitution operation, new sentence analyses can be con-
structed by means of this subtree collection. For instance, an analysis for the sentence Mary likes 
Susan can be generated by combining the three subtrees in Figure 6 from the set in Figure 5.

For the following it is important to distinguish between a derivation and an analysis (or parse tree) 
of a sentence. By a derivation of a sentence we mean a sequence of subtrees the first of which has its 
root labelled with S and for which the iterative application of the substitution operation produces the 
particular sentence. By an analysis of a sentence we mean the resulting parse tree of a derivation of 
the sentence. Then the probability of the derivation in Figure 6 is the joint probability of three sto-
chastic events: (1) selecting the subtree S[NP VP[ V[likes] NP]] among the bag of subtrees with root 

Figure 3.  A different derivation for She saw the dress with the telescope.
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label S; (2) selecting the subtree NP[Mary] among the subtrees with root label NP; and (3) selecting 
the subtree NP[Susan] among the subtrees with root label NP. The probability of each event can be 
computed from the frequencies of the occurrences of the subtrees in the corpus. For instance, the 
probability of event (1) is computed by dividing the number of occurrences of the subtree S[NP VP[ 

V[likes] NP]] by the total number of occurrences of subtrees with root label S: 1/20.
In general, let | t | be the number of times subtree t occurs in the bag and r(t) be the root node 

category of t, then the probability assigned to t is

P t
t

t
t r t r t

( ) =
( )= ( )∑ ′ ′:

Since in our stochastic generation process each subtree selection is independent of the previous 
selections, the probability of a derivation is the product of the probabilities of the subtrees it 
involves. Thus, the probability of the derivation in Figure 6 is 1/20 × 1/4 × 1/4 = 1/320. In general, 
the probability of a derivation t1 ° …° tn is given by

P t t P tn i i1  ...( ) = ( )Π

The probability of an analysis or parse tree is not equal to the probability of a derivation producing 
it. There can be many different derivations resulting in the same parse tree. Although redundant 
from a linguistic point of view, from a statistical point of view these spurious derivations really 
matter: all derivations resulting in a certain parse tree contribute to the probability of that tree.

The probability of a parse tree is the probability that it is produced by any of its derivations. That 
is, the probability of a parse tree T is the sum of the probabilities of its distinct derivations D:

P T P D
Dderives T( ) = ( )∑

Analogous to the probability of a parse tree, the probability of an utterance is the probability that 
it is yielded by any of its parse trees. For the task of language comprehension, we are often interested 
in finding the most probable parse tree given an utterance – or its most probable meaning if we use 
a corpus in which the trees are enriched with logical forms – and for the task of language production 
we are usually interested in the most probable utterance given a certain meaning or logical form.

There tends to be a preference in DOP for the parse tree that can be constructed out of the lar- 
gest possible corpus fragments (Bod, 2006a), and thus for the parse tree that is most similar to 
previously seen utterance analyses. The same holds for the probability of an utterance: there is a 
preference for the utterance (given a certain meaning or intention) that can be constructed out of 

Figure 4.  A corpus of two trees.



272	 Language and Speech 56(3)

Figure 5.  The bag of subtrees derived from the trees in Figure 4.

the largest possible corpus fragments, thus being most similar to previously seen utterances. This 
feature is important for explaining the use of constructions and prefabricated word combinations 
by natural language users.



Beekhuizen et al.	 273

The probability model explained here is one of the simplest probability estimators for DOP, bet-
ter known as ‘DOP1’. For an overview of different probability models for DOP, see for instance 
Zuidema (2006). During the last few years, a rich literature on DOP has emerged, yielding state-
of-the-art results on the Penn treebank benchmark (Bansal & Klein, 2010; Bod, 2009; Sangati & 
Zuidema, 2011) and inspiring developments in related frameworks, including tree kernels (Collins 
& Duffy, 2001), reranking (Charniak & Johnson, 2005) and Bayesian adaptor and fragment gram-
mars (e.g. Cohn, Goldwater, & Blunsom, 2009; Johnson, Griffiths, & Goldwater, 2007; Post & 
Gildea, 2009, this issue; O’Donnell, 2011).

2.3 Extending DOP to unsupervised learning
A limitation of the DOP approach is that it needs a corpus of already analysed sentences to start 
with. This means that DOP can at best model adult language processing. A first step to extend the 
approach towards language learning was proposed by Bod (2006b, 2007), where it is called ‘Unsu-
pervised DOP’ or ‘U-DOP’: If a language learner does not know which phrase-structure tree should 
be assigned to a sentence, s/he initially allows for all possible trees and lets linguistic experience 
decide which is the most likely one. As a first approximation we will limit the set of all possible 
trees to unlabelled binary trees.2 Conceptually, we can distinguish three learning phases under 
U-DOP:

(i)	 assign all possible (unlabelled binary) trees to a set of given sentences;
(ii)	 divide the binary trees into all subtrees;
(iii)	compute the most probable tree for each sentence.

The only prior knowledge assumed by U-DOP is the notion of tree and the concept of most 
probable tree. U-DOP thus inherits the rather agnostic approach of DOP: We do not constrain the 
units of learning beforehand, but take all possible fragments.3 We will discuss below how such an 
approach generalizes to other learning models, but we will first explain U-DOP in some detail.

2.3.1 Assign all unlabelled binary trees to a set of sentences.  Suppose that a hypothetical language 
learner hears the two sentences watch the dog and the dog barks. How could the learner figure 
out the appropriate tree structures for these sentences? U-DOP conjectures that a learner does so 
by allowing (initially) any fragment of the heard sentences to form a productive unit. The set of 
all unlabelled binary trees for the sentences watch the dog and the dog barks is given in Figure 
7, which for convenience we shall again refer to as the ‘corpus’. Each node in each tree in the 
corpus is assigned the same category label X, since we do not (yet) know what label each phrase 
will receive. To keep our example simple, we do not assign labels to the words, but this can be 
done as well.

Figure 6.  Analysing Mary likes Susan by combining subtrees.
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2.3.2 Divide the binary trees into all subtrees.  Figure 8 lists the subtrees that can be extracted from 
the trees in Figure 7. The first subtree in each row represents the whole sentence as a chunk, while 
the second and the third are ‘proper’ subtrees. Note that while most subtrees occur once, the sub-
tree X[the dog] occurs twice.

2.3.3 Compute the most probable tree for each sentence. From the subtrees in Figure 8, U-DOP can 
compute the most probable tree for the corpus sentences, as well as for new sentences. Consider 
the corpus sentence the dog barks. On the basis of the subtrees in Figure 8, two phrase-structure 
trees can be generated by U-DOP for this sentence, shown in Figure 9. Both tree structures can be 
produced by two different derivations, either by trivially selecting the largest possible subtrees 
from Figure 8 that span the whole sentence or by combining two smaller subtrees.

Thus the sentence the dog barks can be trivially parsed by any of its fully spanning trees, which 
is a direct consequence of U-DOP’s property that subtrees of any size may play a role in language 
learning. This situation does not usually occur when structures for new sentences are learned. 
U-DOP computes the most probable tree in the same way as the supervised version of DOP 
explained above. Since the subtree X[the dog] is the only subtree that occurs more than once, we 
can informally predict that the most probable tree corresponds to the structure X[X[the dog] barks], 
where the dog is a constituent. This can also be shown formally by applying the probability defini-
tions given in Section 2:

P(X[the X[dog barks]]) = 1/12 + (1/12 × 1/12) = 13/144

P(X[X[the dog] barks]) = 1/12 + (1/12 × 2/12) = 14/144

Thus the tree X[X[the dog] barks] wins, although with just a little bit. We leave the computation 
of the conditional probabilities of each tree given the sentence the dog barks to the reader. The rela-
tive difference in probability is small because the derivation consisting of the entire tree takes a 
considerable part of the probability mass (1/12).

For the sake of simplicity, we only used trees without lexical categories in our illustration of 
U-DOP. However, we can straightforwardly assign abstract labels X to the words as well. If we do 

Figure 7.  The unlabelled binary tree set for watch the dog and the dog barks.
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so for the sentences in Figure 7, then one of the possible subtrees for the sentence watch the dog is 
given in Figure 10. This subtree has a discontiguous yield watch X dog, which we will refer to as a 
discontiguous subtree.

Discontiguous subtrees are important for covering a range of linguistic constructions, as those 
given in italics in sentences (1)–(5):

(1) BA carried more people than cargo in 2005.
(2) What’s this scratch doing on the table?

Figure 8.  The subtree set for the binary trees in Figure 7.

Figure 9.  Parsing the dog barks from the subtrees in Figure 8.
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(3) Don’t take him by surprise.
(4) Fraser put dollie nighty on.
(5) Most software companies in Vietnam are small sized.

These constructions have been discussed at various places in the literature (e.g. Bod, 1998; Gold-
berg, 2006), and all of them are discontiguous. They range from idiomatic, multi-word units, for 
example, (1)–(3), and particle verbs, for example (4), to regular syntactic agreement phenomena as 
in (5). The notion of subtree can easily capture the syntactic structure of these discontiguous 
constructions.

2.4 U-DOP’s solutions to nativist puzzles
An important characteristic of U-DOP is that it can learn complex syntactic facets that are typically 
assumed to be governed by innate rules or constraints. Instead, in U-DOP/DOP rule-like behaviour 
can be a side-effect of computing the most probable analysis. To show this we will discuss with 
some detail the phenomenon of auxiliary fronting. This phenomenon, although originally intro-
duced to argue for ‘structure dependence’ alone, is often taken to support the well-known ‘Poverty 
of the Stimulus’ argument and is called by Crain (1991) the ‘parade case of an innate constraint’. 
Let us start with the usual examples, which are the same as those used by Crain (1991), MacWhin-
ney (2005), Clark and Eyraud (2006) and many others:

(5)	 The man is hungry

If we turn sentence (5) into a (polar) interrogative, the auxiliary is is fronted, resulting in sen-
tence (6):

(6)	 Is the man hungry?

A language learner might derive from these two sentences that the first occurring auxiliary is 
fronted. However, when the sentence also contains a relative clause with an auxiliary is, it should 
not be the first occurrence of is that is fronted but the one in the main clause:

(7)	 The man who is eating is hungry

Figure 10.  A discontiguous subtree.
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(8)	 Is the man who is eating hungry?

Many researchers have argued that there is no reason that children should favour the correct auxiliary 
fronting. Yet children do produce the correct sentences of the form (7) and rarely of the form 
(9), even if they have not heard the correct form before (Crain & Nakayama, 1987).

(9)	 *Is the man who eating is hungry?

According to the nativist view and the ‘poverty of the stimulus’ argument, sentences of the type in 
(8) are so rare that children must have innately specified knowledge that allows them to learn this 
facet of language without ever having seen it (Crain & Nakayama, 1987). On the other hand, it has 
been claimed that this type of sentence can be learned from experience alone (Lewis & Elman, 
2001; Perfors, Tenenbaum, & Regier, 2011; Reali & Christiansen, 2005). We will not enter the 
controversy at this point (see Kam, Stoyneshka, Tornyova, Fodor, & Sakas, 2008), but believe that 
both viewpoints overlook an alternative possibility, namely that auxiliary fronting needs neither be 
innately specified nor in the input data in order to be learned. Instead, the phenomenon may be a 
side-effect of computing the most probable sentence structure without learning any explicit rule or 
constraint for this phenomenon.

The learning of auxiliary fronting can proceed when we have induced tree structures for the 
following two sentences:

(10)  The man who is eating is hungry
(11)  Is the boy hungry?

Note that these sentences do not contain an example of complex fronting where the auxiliary 
should be fronted from the main clause rather than from the relative clause. The tree structures for 
(10) and (11) can be derived from exactly the same sentences, as in Clark and Eyraud (2006):

(12)  The man who is eating mumbled
(13)  The man is hungry
(14)  The man mumbled
(15)  The boy is eating

It can be shown that the most probable trees for (10) and (11) computed by U-DOP from sentences 
(10)–(15) are those in Figure 11 (see Bod, 2009, for details).

Given these trees, we can easily show that the most probable tree produces the correct auxiliary 
fronting. In order to produce the correct AUX-question, Is the man who is eating hungry, we only 
need to combine the following two subtrees in Figure 12 from the acquired structures in Figure 11 
(note that the first subtree is discontiguous).4

Instead, to produce the incorrect AUX-question *Is the man who eating is hungry? we would 
need to combine at least four subtrees from Figure 11, which are given in Figure 13.

The derivation in Figure 12 turns out to be the most likely one, thereby overruling the incorrect 
form produced Figure 13. This may be intuitively understood as follows: We have already explained 
in Section 2.3 that (U-)DOP’s probability model has a very strong preference for sentences and 
structures that can be constructed out of the largest corpus fragments. This means that sentences 
generated by a shorter derivation tend to be preferred over sentences that can only be generated by 
longer derivations.
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We should keep in mind that the example above is limited to a couple of artificial sentences. 
Bod (2009) showed that U-DOP can also learn auxiliary fronting from the utterances in the Eve 
corpus (MacWhinney, 2000), even though complex auxiliary fronting does not occur in that cor-
pus. In a similar vein, Bod and Smets (2012) applied U-DOP to other linguistic phenomena thought 
to be governed by constraints and rules. For, amongst other things, the Complex NP-constraint, 
Subject WH-questions, WH-questions in situ, superiority effects of question words, the lack of 
auxiliary fronting in embedded WH-questions and the blocking of movement from WH-islands, 
they showed that given a phrase-structure grammar, trained in an unsupervised fashion on child-
directed speech (the Adam corpus in the CHILDES database), the model correctly assigned more 

Figure 11.  Tree structures for the man who is eating is hungry and is the boy hungry? learned by U-DOP 
from sentences (10)–(15).

Figure 12.  Producing the correct auxiliary fronting by combining two subtrees from Figure 11.

Figure 13.  Producing the incorrect AUX-fronting by combining four subtrees from Figure 11.
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probability mass to grammatical variants of the constructions than the allegedly blocked ungram-
matical ones. This suggests that these patterns can be predicted on the distributional information in 
the input data, although the patterns themselves need not be observed directly. Ungrammatical 
variants appear to be less probable than their grammatical counterparts. Bod and Smets argue that 
a simple unsupervised learning model such as U-DOP can solve virtually all nativist ‘puzzles’ 
pertaining to syntactic ordering phenomena reported in the literature without assuming separate 
constraints (see also Perfors et  al., 2011, for similar arguments). Moreover, in several cases it 
turned out that only little syntactic structure was needed: the linguistic phenomena could often be 
learned by simply combining previously encountered sequential phrases (see Frank, Bod, & Chris-
tiansen, 2012, for further discussion).

3 Current developments: Principled constraints on redundancy

In U-DOP, the learner considers all binary subtrees, from minimal depth-one rules to full projec-
tions over an entire utterance. Taking our principles of experience and heterogeneity seriously, 
some aspects of U-DOP are problematic from the principles of experience and heterogeneity. In 
this section, we discuss these conceptual problems and take up the challenge of developing a 
developmentally plausible model.

In U-DOP, subtrees consist of binary branching trees (such as X[X X]) and lexical productions 
(such as X[dog]). These are given by U-DOP as the basic building blocks. This starting point seems 
to contradict two of the principles laid out in Section 1. Given the principle of heterogeneity, the 
constraint of binarity seems unwarranted. Perhaps language users produce and perceive wider frag-
ments. A learner driven by experience would indeed have to figure out what kind of widths trees 
might have without having a hard-wired deterministic bias towards binary branchings. More 
pressingly, the starting point of binary branching trees forces the learner to conceptualize the initial 
analysis of every utterance as hierarchical, whereas it might be the case that learners do not come 
equipped with this preconception, but rather induce the fact that language structure is hierarchical 
from the nature of the data.

In this section, we explore a model that can be used to induce hierarchical structure, namely a 
variant of Bayesian Model Merging (BMM; Stolcke & Omohundro, 1994). BMM consists of two 
steps: firstly, the data (i.c. strings of words) are incorporated as completely flat rules in the gram-
mar. Then the model tries to arrive at a grammar that optimally balances the compactness of its 
representation (a more abstract grammar can be encoded more compactly) and the fit with the data 
(a more abstract grammar fits the data less precisely). It does so by replacing substrings of the 
right-hand sides of the rules by novel symbols, effectively introducing more hierarchical analyses 
and novel constituent classes.

3.1 Segmentation of initial analyses with Bayesian Model Merging
The approach we take differs on several points from BMM as proposed by Stolcke and Omohundro 
(1994). We will encounter the differences as we go. Suppose we have the two sentences John likes 
Mary and John likes Fred. Using U-DOP, we can extract 20 subtrees from these examples. Several 
of those, however, are not observed by the learner to be used in any productive way, such as the 
ones in Figure 14. Therefore, the learner has little evidence to analyse these subtrees as indepen-
dent units. Rather, it suffices to have a X[John likes X] fragment and two fragments stating that 
Mary constitutes an X and so does Bill. Let us call these minimal fragments. A minimal fragment 
is a depth-one, n-ary (for n > 0) tree where the leaf nodes can be lexical items or slots (X-labels). 
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For each training item, these minimal fragments constitute a parse tree of that training item. The 
minimal fragments X[John likes X] and X[Mary] can be composed into the parse tree X[John likes 

X[Mary]]. On the basis of these parse trees we can derive an all-subtree grammar such as the one 
in Figure 15. A subtree is then a subgraph of a parse tree, containing one or more minimal 
fragments.

Now, how does a learner arrive at the specific set of minimal fragments underlying the set of 
subtrees in Figure 15? Why would this segmentation be better than having no segmentation (i.e. 
each training item consisting of one big minimal fragment) or a situation in which the analysis 
consists of two binary minimal fragments and three word production fragments of the type X[likes]? 
Intuitively, the former situation seems to lack a generalization, whereas the latter makes an unwar-
ranted abstraction. Thus, we need a mechanism to determine what amount of abstraction and hier-
archy over the training items is optimal.

We try to find this optimum, like BMM, by rewriting the elements of the grammar, in our case 
the minimal fragments. This search has several steps. By comparing two minimal fragments and 
rewriting them in a more compact format, the model tries to arrive at an optimal trade-off between 
the compactness of the grammar and the degree to which this analysis fits the data. The model 
starts with a fully unsegmented grammar (i.e. all minimal fragments are of the form X[w1…wn]) and 
generates a set of candidate grammars on the basis of possible merges between any two minimal 
fragments in the grammar. Unlike in Stolcke and Omohundro’s (1994) work, our merging opera-
tions do not include the original Merge operation, as our rules are categoryless, but only a variant 
of their Chunk operation, which creates novel minimal fragments or rules out of existing ones. We 
propose, different from Stolcke and Omohundro, that the search for optimal minimal fragments be 
guided by pairwise comparisons between known minimal fragments. These pairwise comparisons 
present us with structural analogies, which can be used to create novel minimal fragments on the 
basis of the analogically mappings. This process makes the grammar more compact, as shared 
structure in the minimal fragments is no longer redundantly stored in each of the trees, but in a new 
tree. On the other hand, it makes the probability of generating the observed combinations of sub-
trees less likely.

Figure 14.  Three unproductive fragments on the basis of the sentences John likes Mary and John likes Fred.

Figure 15.  An all-subtrees grammar on the basis of the minimal fragments in the training items John likes 
Mary and John likes Fred.
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More concretely, the model looks for compression of the grammar by optimally aligning two 
strings of leaf nodes of a minimal fragment by means of the backtrace of the Wagner–Fisher algo-
rithm for finding the minimum edit distance between those two strings (Wagner & Fisher, 1974). 
This produces a set of identical leaf nodes and a set of non-identical ones. In two cases this map-
ping can lead to the creation of a novel minimal fragment.

1.	 One of the strings of leaf nodes is a proper subset of the other string of leaf nodes 
(Peripheral Chunk).

2.	 Each contiguous string of non-identical leaf nodes in each minimal fragment occurs in the 
same context as one contiguous string of non-identical leaf nodes in the other minimal frag-
ment. A context can be a leaf node that is identical in both minimal fragments or the begin-
ning or end of the string of leaf nodes (Slot-filler Chunk).

For John likes Mary and John likes Fred, this means that we find a Slot-filler Chunk: The differ-
ences Mary and Fred occur in the same context in both minimal fragments: between the word likes 
and the end of the string.

In principle, many other restrictions and other chunking operations could be posited, and future 
research will have to point out the effect of each. These two were selected to reflect a simple man-
ner of analogical reasoning over minimal fragments. In case of a Peripheral Chunk, the difference 
between the fragments gives us the only novel fragment, as the overlap coincides with one of the 
two strings of leaf nodes (see Figure 16 for an example). In the Slot-filler Chunk, the mapped ele-
ments, with substitution sites at the positions of the differences form the leaf nodes of a new mini-
mal fragment. Similarly, for all contiguous strings of differing leaf nodes, new minimal fragments 
containing those differing leaf nodes are added to the grammar as well (see Figure 17 for an 
example).

For each operation, we create a new candidate grammar of minimal fragments, differing slightly 
from the current grammar. As we apply the chunking operation to all pairs of minimal fragments, 
the procedure generates a set of candidate grammars, one for each legal chunking operation. Out 
of these, the candidate grammar that optimizes the compactness of the grammar and the fit with the 
data is selected to be the new grammar for the next round. This process of finding the candidate 
merges and selecting the optimal one is repeated until no better model can be found (with some 
tokens of lookahead to avoid getting stuck in local optima). The more compact the grammar and 
the data can be described, the less redundant the model is; information that was previously encoded 

Figure 16.  A Peripheral Chunk operation on I laughed and So I laughed.

Figure 17.  A Slot-filler Chunk operation on John likes Mary and John likes Fred.
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twice, is now encoded only once with the resulting rules from a chunking operation without too 
much loss in the description of the data.

The optimization of compactness and fit can be phrased in terms of encoding the information in 
the grammar and in the data as described by the grammar. These can be given by the Minimum 
Description Length principle (Rissanen, 1989). This principle states that the optimal model is the 
one that minimizes the sum of the length of the optimally compact binary encoding of the grammar 
given some encoding schema (the Grammar Description Length, GDL) and the length of the opti-
mally compact binary encoding of the data given the grammar (the Data Description Length, 
DDL). These two terms are used because they trade-off the virtues of having a simple grammar and 
having a grammar that fits the data well:

DL GDL DDL= +

The GDL is the sum of the Description Lengths of all of the grammar’s fragments. The Description 
Length of a minimal fragment, then, is the amount of bits needed to encode that rule.5

The DDL term makes use of the connection between information theory and probability theory. 
When we want to encode the data in an optimally compact manner, the fragments that will have to 
be often encoded should have a low cost of encoding. The optimal cost for each of the fragments 
used in the data points should thus be inversely proportional to its probability of occurrence. The 
description length of a single parse tree over a data point d, or DL(d), is given by the logarithmic 
transformation of the joint probability of the minimal fragments mf1…mfn that make up that parse 
tree, where the probability of a minimal fragment is given by its relative frequency among minimal 
fragments with an identical root node (i.c. all minimal fragments, as all are headed by the label X). 
The DDL, then, is the sum of the description lengths of all parse trees over all data points in the 
training data D:
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The result of this optimization process is a set of minimal fragments out of which all training 
items are built up. Every round, the analyses of the training items are updated by replacing chunked 
fragments by the representations replacing them. After this grammar induction step, we can take all 
possible multi-fragment subtrees over our induced parse trees and use these as the productive units 
of the grammar. We will call this the extraction step. The expected effect of having an induction 
and an extraction step is that there is a reduction in the number of subtrees used, which does not 
hinder the performance, as the unsegmented chunks are unlikely to contain structure that is benefi-
cial for parsing novel utterances. Effectively, this model, like other Bayesian approaches to struc-
ture learning (O’Donnell, 2011; Perfors et  al., 2011; Post & Gildea, this issue), implements a 
cognitive version of Occam’s razor by stating that the model that has as few and as simple ‘entities’ 
on the one hand and as good a coverage of the data as possible is the optimal model.

It might have struck the reader that the proposed induction algorithm operates by minimizing 
redundancy, whereas in Section 1 the authors proposed redundancy as a design feature of the cog-
nitive system of a language user. There are two reasons why the resulting induced grammars still 
display redundancy. Firstly, the chunking operations take place locally. This means that it might be 
the case that the boy and the girl are chunked into the X, but a third item the bathroom is not 
chunked, possibly because of a higher likelihood of parsing the bathroom as one whole. Suppose 
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now that the X is learned, and the model knows the word bathroom in some other way, and it still 
has the bathroom as a whole. In this case, the model displays redundancies, whereas the induced 
structure is optimal. Secondly, redundancy is introduced by extracting all subtrees from the induced 
parse trees. This is the kind of redundancy that DOP advocates and that has led to a good parsing 
performance as well as linguistically interesting findings. The redundancy-reducing optimization 
proposed is therefore an effect that is local rather than across the board and that applies to finding 
the minimal bits rather than the subtrees derived from the parse trees given by those minimal bits.

This model is by no means the first to explore data-driven restrictions on the hypothesis space 
of possible fragments. The issue that only some subtrees are useful in understanding novel linguis-
tic material and means of finding those subtrees are discussed in what could be called ‘best- 
subtree’ approaches, such as Zuidema (2007), Cohn et al. (2009), Post and Gildea (2009, this issue) 
and O’Donnell (2011). The models described in those publications all start from analysed training 
items (but see Cohn, Blunsom, & Goldwater, 2010) and start their search process with grammars 
with small fragments (i.e. close to a probabilistic context-free grammar (PCFG) model that consti-
tutes the base distribution). The bundle of properties that sets BMM-DOP apart from these 
approaches is that it unsupervisedly induces the bracketing structure instead of looking for substi-
tution sites in a given parse tree, that it starts with large constructions and gradually moves towards 
smaller fragments, and that it does so by explicitly using analogies between different fragments to 
limit the hypothesis space.

3.2 First experiments
To show how the model arrives at linguistically interesting structures, we experimented with syn-
thetic data as well as child-directed speech.

3.2.1 Synthetic data.  A hallmark of context-free grammars is that they can recursively generate 
centre-embedded structures. The model presented is capable of learning rules that allow one to do 
so from a finite set of strings. Given that the model is presented with the strings ab, aabb and 
aaabbb, can the model learn that only strings of the form anbn, with n > 0 and n ∈ N, is a legal 
production of this language?

The grammar induced from the three strings indeed shows the desired kind of centre embed-
ding: performing a Peripheral Chunk on X[a b] and X[a a b b] (the former being a proper substring 
of the latter) yields X[a b] and X[a X b] as new rules, which amounts to a reduction of the Descrip-
tion Length (although the DDL increases, the GDL decreases more).6 Eventually, the optimal 

Figure 18.  Optimal analyses of the strings ab, aabb and aaabbb.
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grammar consists of the minimal fragments X[a b] and X[a X b].7 Now, the resulting analyses of the 
training strings look as follows (Figure 18), with the set of all subtrees in Figure 19.

Given this bag of subtrees, the model is able to parse all and only those strings conforming to 
the format anbn, for any n > 0. Interestingly, the all-subtrees assumption does present us with a 
cognitively interesting derivation process for an anbn string with n being one larger than the largest 
observed n (e.g. aaaabbbb for our grammar). The most probable derivation for aaaabbbb, given a 
relative frequency estimator, is given in Figure 20, its probability being 3/10 × 1/10 = 3/100.

What is interesting is that this derivation consists of the depth-one subtree with a non- 
terminal node in the middle and a full, lexical fragment. Parsing anbn strings for larger values 
of n thus amounts in this model to taking the largest possible, fully lexical chunks from memory 
and combining them with the smallest possible abstract chunk, basically making the number of 
embedding operations in the derivation only one instead of n–1 for an anbn string analysed with 
only the minimal fragments X[a b] and X[a X b]. This result suggests, in line with the principle 
of heterogeneity, that cases that seem complex (i.c. the number of centre embeddings used to 
generate an anbn string using only depth-one subtrees) can sometimes be solved in a cognitively 

Figure 19.  All subtree types from the analyses in Figure 18.

Figure 20.  The most probable derivation of aaaabbbb given the subtrees in Figure 19.
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simpler manner (i.c. the number of centre embeddings used to generate an anbn string using all 
subtrees, as in Figure 19).

A strong reason as to why the Model Merging-based approach arrives at the desired centre-
embedding grammar is its chunking operation, which deterministically disables it to derive 
‘erroneous’ grammars. U-DOP, not having these constraints, does indeed assign preferred anal-
yses of anbn strings that are not centre-embedded.8 It seems that the model thus has an explana-
tory advantage over U-DOP, but it remains to be seen if the model would be able to converge 
on the centre-embedding grammar given more flexible chunking operations that could lead the 
model astray.

3.2.2 Child-directed speech.  If a child is to learn that the ambient language it is attending to is a 
hierarchical and productive system, it should be able to gather the evidence for this concept from 
the input it receives. Using the push-n-pull algorithm (cf., Zuidema, 2007) on the tree conversions 
of the dependency structure analyses of the Eve corpus (Brown, 1973), Borensztajn, Zuidema, and 
Bod (2009) showed how the most likely grammar to generate such data is more abstract at con-
secutive time points in development. Remaining questions are how such a grammar becomes more 
abstract and what influence the increased exposure to the ambient language has. The Model Merg-
ing approach provides us with a direction to look at for such an answer: the child finds more means 
of reducing the unwarranted redundancy in encoding the grammar and data as it processes more 
exemplars that are produced by a caregiver. As the reduction of redundancy amounts to more 
abstract grammars, there is effectively a causal connection between a greater amount of, and a 
more diverse nature of, the data and a more abstract grammar.

We test this prediction by looking at the analyses of the first 100 training items from the Eve 
corpus that came out after training on 100, 500, 1000 and 2000 items. This means that we per-
formed only the parse tree induction step discussed in Section 3.1 and did not yet extract an all-
subtrees grammar from the data in order to parse unseen data or reparse seen data, but simply 
explored the kind of parse trees that would be induced given the four different batches of data. We 
did so by looking at the average number of minimal fragments that compose an analysis. The 
higher the number of minimal fragments in the analysis of a training item, the more abstract and 
expressive the grammar is, as the space of generating unseen utterances increases. We also looked 
at the maximal depth of the analyses. The maximal depth is the longest path, counting the number 
of nodes crossed, from the top node to a terminal symbol. Here, the longer the paths are, the more 
embedded and hierarchical the syntax becomes. A grammar might use more rules to analyse an 
exemplar, but if these are used alongside each other instead of embedded in each other, the analyses 
remain relatively flat.

Let us first look at some examples. Figure 21 gives the analysis of three exemplars for the four 
different batches.

What does this tell us? As we can see, the overall abstraction and hierarchy increase over the 
four batches. In the first case, the learner notices that can not forms a constituent of some sort, but 
regards it as a variable or filler in batch II, and, seemingly more correctly, as a part of a frame in 
batches III and IV. Similarly, in the second example, the first analysis is almost flat, with the excep-
tion of the recognized word bottle. In batch II, hierarchy is discovered in this sentence, but dollie 
and the possessive pronoun her are erroneously taken to be a constituent, which is corrected after 
having processed 500 more exemplars in batch III. Furthermore, starting from batch II we see that 
there is some sort of an imperative verb-island construction X[give X X], or give with two argu-
ments. Unfortunately, the development is not always towards a more intuitively likely analysis: in 
example three the analysis based on batch II seems the most plausible: a and baby form a 
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constituent and there is something like a copular-construction X is X, which both lack in the other 
analyses. An important part of the further exploration of this model is to see to what extent the 
analyses conform more to some hand-annotated standard.

Turning to a quantitative analysis, the prediction of increasing hierarchy and abstraction was 
borne out by the data, as can be seen in Table 1.

As we can see, an analysis of one of the first 100 utterances by the mother has on average more 
than one minimal fragment more after processing 2000 exemplars than after processing only those 
100. Note that the upper bound, for a fully abstract grammar consisting of the rules X→XX and 
X→t for any terminal symbol t, is an average of 7.94 minimal fragments per analysis. This means 
that the optimal grammar, after having seen 2000 training items, is not as abstract as it could in 
principle be. It remains to be seen how close to this upper bound a grammar trained on an abun-
dance of non-child-directed speech would be.

As for the average depth per exemplar, we can see that this figure increases monotonously as 
well, meaning that as the learner processes more exemplars, the analyses become more hierarchi-
cal. Both findings taken together, we can see that Borensztajn et al.’s (2009) finding on the produc-
tion side can be mimicked on the comprehension side by a learning model that carves up the 
analyses of processed experiences according to analogies and Description Length biases.

Table 1. The average number of minimal fragments and the average maximal depth in the analyses of the 
first 100 training items, given batches of 100, 500, 1000 and 2000 training items.

n training items n minimal fragments Maximal depth

  100 2.25 1.90
  500 2.80 2.18
1000 3.03 2.33
2000 3.53 2.55

Figure 21.  The analysis of three exemplars given the optimal minimal fragments after the four different 
batches (I = 100 items, II = 500, III = 1000, IV = 2000).
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4 Conclusion

In this paper we presented three design principles of language, redundancy featuring among them. 
We gave an overview of a class of models that exploits redundancy both in language parsing and 
language learning (DOP and U-DOP). Although the idea of some form of redundant storage has 
become part and parcel of parsing technologies and usage-based linguistic approaches alike, the 
question how much of it is cognitively realistic and/or computationally optimally efficient is an open 
one. A segmentation strategy, such as Model Merging, paired with an all-subtrees approach could 
reduce the number of rules needed to achieve an optimal performance, thus making the parser and 
learner more efficient. At the same time, starting from unsegmented wholes comes closer to the 
acquisitional situation of a language learner, and thus adds to the cognitive plausibility of the model.
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Notes
1.	 As we will be talking only about redundancy of representation (the storage of multiple elements cover-

ing the same material) and not about signal redundancy, we will henceforth refer to the former concept 
with the term redundancy, lest our terminology be redundant. Note that representational redundancy also 
implies derivational redundancy: if there is redundant storage, there can be expected to be multiple ways 
of arriving at the same analysis of a datum given these representations.

2.	 This restriction can be easily relaxed. Yet U-DOP does not learn argument structure (cf. Alishahi & 
Stevenson, 2008) or any other semantic information.

3.	 In Bod (2009), a further extension of U-DOP is proposed that takes into account the shortest derivation as well.
4.	 We are implicitly assuming a DOP model that computes the most probable sentence given a certain 

meaning to be conveyed, such as in Bonnema, Bod, and Scha (1997) and Bod (1998).
5.	 More precisely, the Description Length of a minimal fragment is given by the number of bits needed to 

declare the fragment (1 bit) in order to demarcate it from other fragments, encode for each leaf node if it 
is a terminal or a non-terminal leaf node (1 bit for each leaf node) and, in case it is a terminal leaf node, 
encode what category (-log2|terminal category| bits per terminal leaf node) and finally end the fragment 
(1 bit). Although more efficient coding schemas can be developed (cf. Petasis, Paliouras, Karkaletsis, 
Halatsis, & Spyropoulos, 2004), as a first approach we employ this simple schema.

6.	 Note that given the original Merge and Chunk operators of Stolcke and Omohundro (1994), an anbn 
grammar could also be induced.

7.	 The cost for declaring a terminal symbol in the grammar is log2(2), as the terminal symbols consists 
of{a,b}. Following the encoding schema’s in Section 3.1, for X→aXb and X→ab the GDL = (1 + 2(1 
+ log2(2)) + 1) + (1 + 2(1 + log2(2))) = 12, whereas the DDL is –log2(3/6 × 3/6 × 3/6 × 3/6 × 3/6 × 3/6) 
= -6log2(3/6) = 6, given that r(X→aXb) = 3 and r(X→ab) = 3 for our three training items. We leave the 
calculations of the DLs of the suboptimal grammars to the readers.

8.	 Gideon Borensztajn, personal communication.
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