Couldn't find any publications matching your query. Please try again.
van der Wal, O., Bachmann, D., Leidinger, A., van Maanen, L., Zuidema, W., & Schulz, K. (2024). Undesirable Biases in NLP: Addressing Challenges of Measurement. Journal of Artificial Intelligence Research. https://doi.org/10.1613/jair.1.15195
de Heer Kloots, M., & Zuidema, W. (2024). Human-like Linguistic Biases in Neural Speech Models: Phonetic Categorization and Phonotactic Constraints in Wav2Vec2.0. 4593–4597.
Abnar, S., Beinborn, L., Choenni, R., & Zuidema, W. (2019). Blackbox meets blackbox: Representational Similarity and Stability Analysis of Neural Language Models and Brains. BlackboxNLP, ACL 2019.
Jumelet, J., Zuidema, W., & Hupkes, D. (2019). Analysing Neural Language Models: Contextual Decomposition Reveals Default Reasoning in Number and Gender Assignment. ArXiv Preprint ArXiv:1909.08975.
Zuidema, W., French, R. M., Alhama, R. G., Ellis, K., O’Donnell, T. J., Sainburg, T., & Gentner, T. Q. (2019). Five Ways in Which Computational Modeling Can Help Advance Cognitive Science: Lessons From Artificial Grammar Learning. Topics in Cognitive Science. https://doi.org/10.1111/tops.12474
Alhama, R. G., & Zuidema, W. (2018). Pre-wiring and pre-training: What does a neural network need to learn truly general identity rules? Journal of Artificial Intelligence Research, 61, 927–946.
Giulianelli, M., Harding, J., Mohnert, F., Hupkes, D., & Zuidema, W. (2018). Under the Hood: Using Diagnostic Classifiers to Investigate and Improve how Language Models Track Agreement Information. Proceedings EMNLP Workshop Analyzing and Interpreting Neural Networks for NLP (BlackboxNLP).
Hupkes, D., Veldhoen, S., & Zuidema, W. (2018). Visualisation and ‘Diagnostic Classifiers’ reveal how recurrent and recursive neural networks process hierarchical structure. Journal of Artificial Intelligence Research, 61, 907–926.
Repplinger, M., Beinborn, L., & Zuidema, W. (2018). Vector-space models of words and sentences. Nieuw Archief Voor De Wiskunde.
Zuidema, W., & de Boer, B. (2018). The evolution of combinatorial structure in language. Current Opinion in Behavioral Sciences, 21, 138–144.
van Woerkom, W., & Zuidema, W. (2017). Selecting the model that best fits the data - Commentary on Tali Leibovich, Naama Katzin, Maayan Harel and Avishai Henik, From ‘sense of number’ to ‘sense of magnitude’ – The role of continuous magnitudes in numerical cognition (in press). Behavioral and Brain Sciences, 40, e192.
Le, P., & Zuidema, W. (2015). The Forest Convolutional Network : Compositional Distributional Semantics with a Neural Chart and without Binarization. Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 1155–1164.
Rohrmeier, M., Zuidema, W., Wiggins, G. A., & Scharff, C. (2015). Principles of structure building in music, language and animal song. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140097.
Borensztajn, G., Zuidema, W., & Bod, R. (2009). Children’s Grammars Grow More Abstract with Age-Evidence from an Automatic Procedure for Identifying the Productive Units of Language. Topics in Cognitive Science, 1, 175–188.
Zuidema, W. (2002). The importance of social learning in the evolution of cooperation and communication - Commentary on Howard Rachlin, Altruism and Selfishness. Behavioral and Brain Sciences, 25, 283–284.
de Heer Kloots, M., & Zuidema, W. (2024). Human-like Linguistic Biases in Neural Speech Models: Phonetic Categorization and Phonotactic Constraints in Wav2Vec2.0. 4593–4597.
Chintam, A., Beloch, R., Zuidema, W., Hanna, M., & van der Wal, O. (2023). Identifying and Adapting Transformer-Components Responsible for Gender Bias in an English Language Model. Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, 379–394.
Jumelet, J., Hanna, M., de Heer Kloots, M., Langedijk, A., Pouw, C., & van der Wal, O. (2023). ChapGTP, ILLC’s Attempt at Raising a BabyLM: Improving Data Efficiency by Automatic Task Formation. Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning, 74–85.
Cornelissen, B., Zuidema, W., & Burgoyne, J. A. (2021). Cosine Contours: a Multipurpose Representation for Melodies. Proceedings of the 22th International Conference on Music Information Retrieval. Presented at the Online. Online.
Cornelissen, B., Zuidema, W., & Burgoyne, J. A. (2021). Musical Modes as Statistical Modes: Classifying Modi in Gregorian Chant. Proceedings of the 6th International Conference on Analytical Approaches to World Music. Presented at the Paris, France. Paris, France.
Cornelissen, B., Zuidema, W., & Burgoyne, J. A. (2020). Mode Classification and Natural Units in Plainchant. Proceedings of the 21th International Conference on Music Information Retrieval, 869–875. Montreal, Canada.
Cornelissen, B., Zuidema, W., & Burgoyne, J. A. (2020). Studying Large Plainchant Corpora Using chant21. 7th International Conference on Digital Libraries for Musicology, 40–44. Montreal, Canada: ACM.
Leonandya, R., Bruni, E., Hupkes, D., & Kruszewski, G. (2019). The Fast and the Flexible: training neural networks to learn to follow instructions from small data. The 13th International Conference on Computational Semantics (IWCS).
Abnar, S., Ahmed, R., Mijnheer, M., & Zuidema, W. (2018). Experiential, Distributional and Dependency-based Word Embeddings have Complementary Roles in Decoding Brain Activity (preprint). Proceedings Workshop on Cognitive Modeling and Computational Linguistics (CMCL). https://doi.org/10.3389/conf.fninf.2014.18.00084
Giulianelli, M., Harding, J., Mohnert, F., Hupkes, D., & Zuidema, W. (2018). Under the Hood: Using Diagnostic Classifiers to Investigate and Improve how Language Models Track Agreement Information. Proceedings EMNLP Workshop Analyzing and Interpreting Neural Networks for NLP (BlackboxNLP).
Hupkes, D., & Zuidema, W. (2017). Diagnostic classification and symbolic guidance to understand and improve recurrent neural networks. Workshop on Interpreting, Explaining and Visualizing Deep Learning (at NIPS).
Alhama, R. G., & Zuidema, W. (2016). Generalization in Artificial Language Learning: Modelling the Propensity to Generalize. Proceeding Cognitive Aspects of Computational Language Learning (Workshop at ACL), 64–72.
Le, P., & Zuidema, W. (2016). Quantifying the vanishing gradient and long distance dependency problem in recursive neural networks and recursive LSTMs. Workshop on Representation Learning (at ACL). https://doi.org/10.18653/v1/W16-1610
Veldhoen, S., Hupkes, D., & Zuidema, W. (2016). Diagnostic classifiers: revealing how neural networks process hierarchical structure. Workshop on Cognitive Computation: Integrating Neural and Symbolic Approaches (at NIPS).
Le, P., & Zuidema, W. (2015). The Forest Convolutional Network : Compositional Distributional Semantics with a Neural Chart and without Binarization. Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 1155–1164.
Monaghan, P., & Zuidema, W. H. (2015). General purpose cognitive processing constraints and phonotactic propoerties of the vocabulary. Proceedings of the International Conference of the Phonetic Sciences (ICPhS).
Le, P., Zuidema, W., & Scha, R. (2013). Learning from errors: Using vector-based compositional semantics for parse reranking. Proceedings Workshop on Continuous Vector Space Models and Their Compositionality (at ACL 2013).
Borensztajn, G., & Zuidema, W. (2011). Episodic grammar : a computational model of the interaction between episodic and semantic memory in language processing. Proceedings of the Conference of the Cognitive Science Society, 507–512.
Kunert, R., Fernández, R., & Zuidema, W. (2011). Adaptation in child directed speech: Evidence from corpora. Proceedings of the Workshop on the Semantics and Pragmatics of Dialogue, 112–119.
Borensztajn, G., Zuidema, W., & Bod, R. (2009). The hierarchical prediction network: towards a neural theory of grammar acquisition. Proceedings of the Conference of the Cognitive Science Society, 2974–2979.
van Heijningen, C. A. A., de Visser, J., Zuidema, W., & ten Cate, C. (2009). Simple rules can explain discrimination of putative recursive syntactic structures by a songbird species. Proceedings of the National Academy of Sciences, 106, 20538–20543.
Zuidema, W. (2008). A Gradual Path To Hierarchical Phrase-Structure: Insights from Modeling and Corpus-Data. In A. D. M. Smith, K. Smith, & R. Ferrer i Cancho (Eds.), Proceedings of the International Conference on the Evolution of Language (pp. 509–510). World Scientific.
Zuidema, W. (2006). What are the productive units of natural language grammar?: a DOP approach to the automatic identification of constructions. Proceedings of the Conference on Computational Natural Language Learning (CoNLL), 29–36.
Zuidema, W. (2002). Language adaptation helps language acquisition. In B. Hallam, D. Floreano, J. Hallam, G. Hayes, & J.-A. Meye (Eds.), Proceedings of the International Conference on Simulation of Adaptive Behavior (Vol. 7, pp. 417–418). MIT Press.
Zuidema, W. H. (2001). Emergent syntax: The unremitting value of computational modeling for understanding the origins of complex language. Proceedings of the European Conference on Artificial Life, 641–644.
Zuidema, W., & Westermann, G. (2001). Towards formal models of embodiment and self-organization of language. Proceedings of the Workshop on Developmental Embodied Cognition at the Annual Meeting of the Cognitive Science Society.
Zuidema, W., & Fitz, H. (2019). Models of human language and speech processing. In P. Hagoort (Ed.), Human Language. MIT press.
Zuidema, W., & Le, P. (2019). Vector-based and Neural Models of Semantics. In P. Hagoort (Ed.), Human Language. MIT press.
Merker, B., Morley, I., & Zuidema, W. (2018). Five fundamental constraints on theories of the origins of music. In H. J. Honing (Ed.), The Origins of Musicality (pp. 49–80). MIT Press.
Zuidema, W., Hupkes, D., Wiggins, G. A., Scharff, C., & Rohrmeirer, M. (2018). Formal Models of Structure Building in Music, Language, and Animal Song. In H. J. Honing (Ed.), The Origins of Musicality (pp. 253–286). MIT Press.
Zuidema, J. (2015). Zwarte inktvlekjes op een witte achtergrond. In M. Geels & T. van Opijnen (Eds.), Nederland in ideeën – Dit is het mooiste ooit. Maven.
Borensztajn, G., Zuidema, W., & Bechtel, W. (2014). Systematicity and the Need for Encapsulated Representations. In P. Calvo & J. Symons (Eds.), The Architecture of Cognition (p. 165). MIT Press.
Zuidema, J. (2014). Relax – Taalfouten bestaan niet. In M. Geels & T. van Opijnen (Eds.), Nederland in ideeën – Dit wil je weten (pp. 256–258). Maven.
ten Cate, C., Lachlan, R., & Zuidema, W. (2013). Analyzing the Structure of Bird Vocalizations and Language: Finding Common Ground. In J. J. Bolhuis & M. Everaert (Eds.), Birdsong, Speech, and Language (pp. 243–260). MIT Press.
Zuidema, J. (2013). Honderdduizend jaar nuttig geklets. In M. Geels & T. van Opijnen (Eds.), Nederland in ideeën: 101 denkers over inzichten en innovaties die ons land verander(d)en. Maven.
Zuidema, J. (2013). Van A naar B. In A. Reuneker, R. Boogaart, & S. Lensink (Eds.), Aries netwerk – een constructicon. Columns aangeboden aan Arie Verhagen.
Zuidema, W., & De Boer, B. (2013). Modeling in the Language Sciences. In R. J. Podesva & D. Sharma (Eds.), Research Methods in Linguistics (pp. 422–439). Cambridge University Press.
Versteegh, M., Sangati, F., & Zuidema, W. (2010). Simulations Of Socio-Linguistic Change: Implications for Unidirectionality. In Proceedings of the International Conference on the Evolution of Language (pp. 511–512). World Scientific.
Zuidema, W. H. (2000). Evolution of syntax in groups of agents - Master’s thesis (Master's thesis).